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ABSTRACT 

The overall objective of this study is to utilize high resolution lidar-derived digital 

elevation models (DEMs) to improve classification and understanding of forested watersheds. 

Since geographic information systems technology became broadly used in natural resource fields 

in the 1980s, scientists have used digital elevation models to study aspects of forested ecosystems 

including the delineation of drainage networks, geomorphic modeling, and ecological 

classification for forest management and ecosystem management. With recently available lidar 

elevation data, we have improved our ability to ―see‖ features on the landscape by orders of 

magnitude. Existing methodologies for assessing geomorphometry and hydrologic network 

delineation across the landscape may not suffice for all tasks. By taking a multi-scale, 

multidisciplinary approach, we can improve our understanding of headwater ecosystems and how 

to assess and predict the relationship between terrain and vegetation.  This research was 

performed in the Leading Ridge experimental watersheds, the site of a long-term study analyzing 

the impact of forest management practices on stream water quality. The Leading Ridge 

experimental watersheds are also located within the Susquehanna/Shale Hills Critical Zone 

Observatory.  

In order to assess the ability of lidar-derived DEM to improve stream network modeling, 

the stream network for Leading Ridge watershed number one was recorded using a GPS unit 

during base flow conditions. The stream network was then modeled using lidar-derived 1 m, 3 m, 

and 10 m resolution DEMs as well as photogrammetrically-derived NED (National Elevation 

Dataset) DEM. All of the lidar-derived DEMs resulted in a relatively accurate stream network 

model, with the 3 m DEM providing the most accurate model. There was no significant 

difference between any of the lidar-derived modeled stream networks, but they were all 

significantly different from the NED DEM-derived stream network, which was much less 
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accurate. Topographic index (TI) was modeled using multiple DEM products and presented very 

different statistical distributions and spatial patterns. The distribution of TI could have an impact 

on hydrologic models, while the improvements in network delineation could substantially 

improve our knowledge of headwater streams on the landscape. This could in part impact forest 

management, site planning, and ecosystem modeling.  

Surface roughness was calculated for Leading Ridge using several algorithms on two 

different lidar-derived DEMs to evaluate patterns of roughness on the watershed. Roughness 

metrics included standard deviation of slope, value of pittedness in cells, standard deviation of 

curvature, and the difference between the original DEM and a splined surface. Micro-plots and 

transects were surveyed to ground truth roughness metrics. Although the scale of the 1 m DEM 

was too coarse to assess micro-topography at the same scale as the ground survey, unique patterns 

were identified on different landforms and soil types. There was also substantial interaction 

between the roughness algorithm and the DEM creation algorithm. The results suggest that 

although there are many complicating factors when assessing surface roughness using a lidar-

derived DEM, there is information about soils and topography that can be obtained. Also, DEMs 

studied here had slightly higher elevation values (about 0.3 m) on average than the field-surveyed 

elevations.  

In order to relate topography to vegetation, curvature was chosen to model landforms 

based on its importance to water transport on an ecosystem. There was evidence of curvature 

being reflective of underlying geology and predictive for soil properties that may affect 

vegetation. Leading Ridge watershed was delineated into nine curvature classes using a 10 m 

DEM, and patterns of curvature were used to construct four recurring formations: hidden hollows, 

rock ridgelets, scalloped slopes, and rounded ridges. Based on a vegetation analysis of these 

formations, there was a difference in both vegetation community and structure based on 



v 

 

formation. Similar formations were calculated for a broader region of the Ridge and Valley 

Province and vegetation communities on formations were identified. There was association 

between the identified vegetation community and the delineated formation.  

Overall, methodologies were developed to explore properties of forested ecosystems in 

the Ridge and Valley Province. Using lidar elevation data, delineation of the stream network and 

characterization of terrain and micro-topography were all improved, and curvature was utilized to 

help classify the landforms in watershed. Further research should attempt to validate these results 

across a broader area, as well as work to develop techniques to use together to create a multi-

scale, hierarchical classification system incorporating hydrologic data, surface roughness, and 

landscape level terrain data.  
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Chapter 1 

 

Introduction 

Since geographic information systems technology became broadly used in natural 

resources fields in the 1980s, scientists have used digital elevation models (DEMs) to study 

aspects of forested ecosystems including the delineation of drainage networks (Tarboton 1991), 

geomorphometric modeling (Moore et al. 1991), and ecological classification for forest 

management and ecosystem management (Franklin 1995). Traditionally, DEMs have been 

generated using photogrammetric methods and their utility is limited by resolution, accuracy, and 

consistency across a landscape. With the newly available light detection and ranging, or lidar-

derived elevation data, we have improved our ability to ―see‖ features on the landscape by orders 

of magnitude. Thus, lidar not only offers an improvement of resolution, but opens up a whole 

new way of viewing landscapes. The magnitude of the upgrade with lidar is so great that we may 

not be able to utilize lidar-derived DEMs in the same way we have used previously available 

DEMs. Models and algorithms developed using 10 m and 30 m DEMs may not function the same 

way with lidar-derived DEMs. Due to the improvements in scale and vertical accuracy, we 

shouldn’t just analyze lidar data with previous methodologies and algorithms. Since lidar is 

available at such high resolution and accuracy, it becomes possible to analyze features at a much 

finer scale. For the purposes of this research, multi-scale refers to working with scales from 

approximately 1 m or less, up to tens, hundreds or thousands of meters. Working at these scales 

provides additional detail and insight in forest ecosystems.  

With the availability of high-quality digital elevation information from lidar (Maune, 

2007) along with improvements in processing tools including GIS and other modeling techniques, 

DEMs have become an integral part of studying natural resources. Lidar promises to not only 
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improve our ability to accurately model the earth, but also allows us to see forests and other 

vegetation in three dimensions. Lidar works by recording the distance between a sensor, usually 

mounted on a fixed wing aircraft, and the ground or other surface that may reflect light such as 

buildings or trees. This provides three-dimensional data that can be converted into an extremely 

accurate DEM, often with horizontal resolutions of approximately 1 meter, and accuracies of 

between 10 and 30 cm both in the vertical and horizontal direction. In addition to providing 

accurate terrain information, lidar returns can be used to model ecosystem functions such as net 

primary productivity (NPP) and total biomass of a site (Lefsky et al. 1999, Kotchenova et al. 

2005, Lefsky et al. 2005).  

Approach and Rationale 

In order to more effectively utilize the improved resolution and accuracy of lidar, a multi-

scale, multidisciplinary approach was undertaken to improve our understanding of a small, 

forested watershed. Because of lidar’s accuracy, for this research multi-scale refers to 

approximately the 1 m scale up to 1000s of meters. Multi-disciplinary refers to combing soils and 

geology, topography, hydrology and forestry data for this research. By focusing this study in one 

location, extensive ground truthing was possible for stream networks, micro-topography, 

geomorphometry, and forest community and structure to validate the various model results and 

synthesize relationships and interactions.  

A multi-scale approach was undertaken by exploring varying accuracies and resolutions 

of initial DEMs, using multiple sized windows and algorithms for analysis, and classifying terrain 

features at different scales. The surface expressions of underlying soil, geology, and hydrology 

occur at multiple scales, however for this research multi-scale is restricted to finer scaled features 

due to advancements in resolution and accuracy due to lidar.  Since terrain is fractal in nature 
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(Glenn et al. 2006), metrics such as slope and roughness can be expressed very differently at 

varying scales and what appears as slope at one scale may be roughness at another. I explored 

different ways of measuring both terrain and roughness in the scale range from sub-meter to 

1000s of meters.  The goal of the research was to delineate features that occur at multiple scales 

that may impact a landscape, from micro-topography on the sub-meter scale to ridges on the scale 

of several kilometers. Also, hydrologic features were modeled using the finest available lidar 

terrain data (1 m) and generalizations from the finest scales (3 m and 10 m) to represent the 

stream network and wetness on the landscape in different ways.  

A multi-disciplinary approach was used to emphasize the broad use of lidar-derived 

terrain data and to maximize the use of the site to extract information. In addition to its previous 

use as an experimental watershed, Leading Ridge is situated within the Shaver’s Creek watershed 

which is being used as part of the Susquehanna/Shale Hills Critical Zone Observatory (CZO), an 

interdisciplinary observatory toward quantitatively predicting creation, evolution, and structure of 

regolith as a function of the geochemical, hydrologic, biologic, and geomorphologic processes 

operating in a temperate forested landscape (Anderson et al. 2008). The critical zone is defined as 

the ―external terrestrial layer extending from the outer limits of vegetation down to and including 

the zone of groundwater‖ (Brantley et al. 2006). Because processes in the critical zone are 

dependent on one another, it was important to explore the impacts that certain decisions made for 

one field would have on another. For example, what impact would using a 1m resolution terrain 

dataset have on the models of topographic index (TI) that will, in turn, influence hydrologic 

models. A central question also involved optimizing scale for the purpose of utilizing data 

efficiently and effectively. Although studied on the fine scale of a single, 119 ha watershed, the 

goal of utilizing these techniques for a broader scale as well was a consideration.   

Although properties of soils and underlying geology undoubtedly have an impact on 

vegetation, there is often a lack of available spatial data on soils and geology at a fine scale. 
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Therefore, in order to truly improve our predictive and modeling techniques, properties of the 

DEM must be used to infer properties of the underlying soils and geology. This research works to 

use lidar for delineating features that make up landforms based on the surficial expression of soils 

and geology in the Ridge and Valley Physiographic Province.  

Research Objectives 

 Improve delineation of hydrologic network using 1 m lidar DEM and 

generalizing up to 10 m resolution. Calculate TI for multiple resolutions of lidar 

to compare statistical distribution and spatial patterns.  

 Characterize and model micro-topography using lidar-derived DEM across a 

limited range of scales. Compare lidar-derived 1m DEM to surface survey.   

 Create a landform classification system that relates to patterns of landform 

curvature that affect vegetation communities and structure. 

Previous Work 

For this research, lidar is utilized to characterize a watershed based on terrain, micro-

topography, hydrology, and forest community metrics. As improvements have been made in 

modeling, computer processing, and digital elevation data, the use of DEMs in ecosystem studies 

has grown (Franklin 1995). Due to known relationships between topography, climate, soil 

formation, and vegetation, much of the early work focused on methods of classifying landforms 

and modeling terrain from digital terrain models including DEMs and other digital 

representations. Research by Zevenbergen and Thorne (1987) and Moore et al. (1991, 1993) 

focused on calculating metrics such as slope, aspect, and curvature from computer based data. 
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There have been multiple books (Wilson and Gallant 2000, Hengl and Reuter 2009) and review 

papers (Blaszczynski 1997, Deng 2007) on the topic of terrain analysis using digital elevation 

data and there are many algorithms and techniques for calculating terrain metrics (Deng 2007).  

Classifying landscapes and landforms is a common goal of scientists trying to utilize 

terrain data for management and predicting relationships between terrain and soil/vegetation. 

Pennock et al. (1987) used slope and curvature to delineate landforms into seven landform 

elements for the purpose of predicting soils. Gessler et al. (1995) also attempted to predict soil 

properties using terrain data basing their model on the concept that terrain directs the movement 

of water and other materials. They found that compound terrain index (CTI) and plan curvature 

predicted soil composition very well. Dikau (1989, 1993) and Moore (1993) also did much work 

with terrain classification using terrain data as well as soil and other digital data sources.  

 More recently, efforts have focused on automated classification systems based on multi-

variate classification using clustering (k-means) and fuzzy membership rules (MacMillan et al. 

1998, Burrough et al. 2000, Schmidt and Hewitt 2004, Summerell et al. 2005). These studies used 

many different landscape metrics in the generation of their landscape classification. The 

methodology of Summerell et al. (2005) focused on hydrological analysis variables, while others 

have relied on slope, curvature, and landscape position (Schmidt and Hewitt 2004). Myers (2000) 

and Kong (2006) have worked at delineating Pennsylvania into landscapes based on soil, 

landscape shape and landscape position.  

With regard to hydrologic modeling or modeling of geomorphic processes using DEMs, 

O’Callahan and Mark (1984) proposed an algorithm of flow routing, the D8 method, that is still 

widely used today and directs flow from any cell of a DEM into the one cell with the lowest 

elevation adjoining that cell. There has been criticism of this method because it tends to result in 

parallel flow paths and cannot model flow divergence. More recently, several multiple flow 

direction algorithms have been proposed (Moore et al. 1993, Tarboton 1997), all of which are 
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capable of routing flow to multiple cells and are thought to provide a more accurate model of 

flow accumulation than the D8 method. Wilson et al. (2007) reviewed flow routing algorithms 

and found that although in general multiple direction flow routing algorithms were preferred to 

single direction methods, there was no agreement on a preferred methodology for all purposes.  

Topographic index (TI) is another commonly used metric that was first proposed for use 

in TOPMODEL, a catchment scale hydrologic model (Beven and Kirkby 1979). TI, also 

sometimes referred to as topographic wetness index (TWI) is now used in everything from 

hydrologic modeling to soil modeling and prediction and ecosystem studies. TI is measured by 

the formula ln(a/tanβ) (a = upslope contributing area per unit contour; tanβ = local slope angle). 

Since there are multiple algorithms for a and β, as well as differences in resolution and quality of 

DEMs, much work has been done to characterize the preferred method of calculating TI (Quinn et 

al. 1995, Sørensen et al. 2006, Sørensen and Seibert 2007, Straumann and Purves 2007). Sørensen 

et al. (2006) specifically explored methods of TI calculation for predicting vegetation and found 

that multi-directional contributing area algorithms are preferred to single direction algorithms, but 

that different methodologies performed better for different applications. The same seems to be 

true for resolution, with the common theme being that resolution does make a difference in both 

the statistical and geographic distribution in TI values, but there is no real agreement on the ideal 

resolution. Many of these studies were done, however, before the widespread use of lidar and 

results were based on photogrammetrically-derived DEMs.  

Several studies have already demonstrated that lidar can provide improvements over 

traditional DEMs in the field of hydrologic modeling and stream networks delineation. Colson 

(2006) and Murphy et al. (2008) both used lidar-derived DEMs to improve network delineation. 

Lane et al. (2004) proposed an adaptation to TOPMODEL to accommodate high resolution 

terrain data in the calculation of TI. Murphy et al. (2011) used a depth to water index in addition 
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to TI to improve understanding of the soil, vegetation, and drainage properties that are associated 

with higher TI values.  

As available elevation data has been changing and improving, there have been numerous 

studies examining the impact of scale and resolution on terrain and hydrologic variables. Many 

early studies evaluating the effects of resolution were working with photogrammetrically-derived 

data that lacked accuracy when compared to lidar-derived data. These studies often found no real 

improvements with increased resolution beyond a certain point, generally around 10 m, (Kienzle 

2004, Thompson et al. 2001), although they also agreed that results in all terrain modeling can 

vary due to scale. Some studies conducted with lidar-derived data also sometimes have produced 

contradictory conclusions. Zhang et al. (2006) found that 10m lidar-derived data was the most 

effective scale for modeling susceptibility to erosion and that significant improvement didn’t 

occur as resolution was increased to 4m, while Zhao et al. (2010) found that a 10m lidar DEM did 

not perform well in hydrologic modeling when compared to a 1 m lidar DEM, and that resolution 

of the DEM was more important than accuracy in hydrologic modeling. Vianello et al. (2009) 

used lidar-derived DEMs to model slopes of a channel network and found the ideal resolution to 

be between 2-5 meters, with 1 m lidar overestimating slopes. Tennenbaum et al. (2006) also 

found that using a smoothed lidar-derived DEM more effectively modeled soil moisture than the 

original data, perhaps due to the over-representation of features such as tree roots in the original 

dataset. Although there is no clear preferred resolution for all purposes, it seems clear that for 

some modeling a coarser resolution may be preferred to the highest resolution data available.   

Many researchers have also focused on identifying the optimal scale for delineating 

particular properties or explore which properties are most sensitive to changes in scale. Curvature 

seems to be particularly problematic. Deng et al. (2007) found that both plan and profile 

curvature were more sensitive to scale than slope, with all terrain attributes responding to 

resolution change in characteristically different ways. Lassueur et al. (2006) also found that 
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curvature was very scale dependent. Tarolli et al. (2010) used multiple sized moving windows for 

calculating curvature and found that a 10 m resolution was the most effective in most cases, 

although delineating different features may require different sized windows. Tarolli and Fontana 

(2009) used very fine scale curvature windows to try to detect channel heads, perhaps identifying 

a feature that may require detection at a finer scale. The overarching message from these previous 

studies involving scale, accuracy, DEMs, and landforms, may be that although scale and 

resolution are very important, there is not an ideal scale, moving window size, or resolution for 

all purposes.   

Because of the unique perspective lidar provides, some studies have begun to analyze 

surface roughness and micro-topography as an additional property of terrain. Early studies have 

focused on using topographic roughness signatures to identify landslide areas (McKean and 

Roering 2003, Glenn et al. 2006, Van Den Eeckhaut et al. 2007), alluvial fan features (Frankel 

and Dolan 2007), describe mangrove habitat (Knight et al. 2009), and identify stream gullies 

(James et al. 2007). Many different methods of calculating roughness have been used, including 

standard deviation of slope (Frankel and Dolan 2007), the difference between regional 

topography and local topography (Glenn et al. 2006), and variograms/fractal methods to examine 

spatial properties of differences (Glenn et al. 2006, Dragut et al. 2011).  Cavelli et al. (2008) 

calculated roughness metrics for a stream channel to identify riffle/pool sequences using lidar.   

An additional complicating factor in DEM analysis is the many different methodologies 

available for generating DEMs from elevation data. Lidar data are generally available in much 

higher density point clouds than previously available data, but there are still several different 

types of algorithms used to generate a DEM that can have impacts on accuracy and resulting 

attributes. Siska and Hung (2001) evaluated several different methodologies including generating 

a TIN (Triangular Irregular Network) from points and converting to a DEM, kriging, Thiessen 

polygons, Inverse Distance Weighted (IDW), and trend. He found TIN and kriging to be the most 
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accurate. Spaete et al. (2011) and Davenport et al. (2004) both examined different sources of error 

with lidar, with Spaete et al. (2011) finding that slope and vegetation can both negatively impact 

lidar accuracy, while Davenport et al. (2004) finding that over time, repeated lidar readings can 

experience errors up to 20-40 cm.  

Understanding the impacts of terrain and water movement through an ecosystem on 

vegetation and other ecological parameters has been a focus on ecosystem research. Although it is 

understood that site is an important predictor to vegetation, there has not been agreement of 

which particular variables may be the most important in understanding and predicting vegetation. 

Many classification methodologies rely on spatial geologic or soils data that may not be available 

at a fine enough scale to pair with lidar. Bowersox and Ward (1972) used field-measured slope 

position, slope, depth of A horizon, percent silt, N content, and Mg content to predict site index. 

Davis and Goetz (1990) predicted live oak distribution using geology, topography, and solar 

radiation calculated from GIS and found that geology was the most important factor.  Franklin 

(1995) reviewed predictive vegetation mapping and provides a nice overview of groups of 

methodologies. Iverson et al. (1997) and Abella et al. (2003) both used geomorphic factors in 

addition to mapped soils data to predict and explain vegetation distribution.  

Hutchinson et al. (1999) created a moisture index to predict forest and understory species 

using slope and aspect, flow accumulation, and curvature, all of which can be calculated using 

digital elevation data. Moseley et al. (2010) defines the concept of ecological site development, 

which is very similar to ecological classification systems (ECSs) in ecosystem management, but 

from a soils perspective. Duniway et al (2010) takes the ecological site development concept a 

step further by incorporating the role of geomorphology in site development. Reiners et al. (1999) 

identified the conflict between the scale available for terrain data and other spatial variables such 

as soil, and chose to only use terrain variables in a landscape classification of Wyoming. 

Although it is understood that geology and soils data are important to understanding and 



10 

 

predicting the distribution of vegetation, the spatial data available for soils and geology are often 

not at a scale that makes their utilization with lidar appropriate. With that in mind, this research 

attempts to improve classification using primarily lidar elevation data and derivations of that data 

as the input.  
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Chapter 2 

 

Multi-scale lidar greatly improve characterization of forested headwater 

streams in central Pennsylvania 

Abstract 

Most current hydrographic data used in Geographic Information Systems (GIS) have 

been derived by digitizing blue line streams from USGS topographic maps or by modeling 

streams using traditional digital elevations models (DEMs) in GIS. Both methods produce stream 

models that lack detail and accuracy, particularly in headwater streams. In addition to channel 

network delineation, another hydrologic attribute that is of interest to hydrologists, modelers, and 

ecologists, is topographic index (TI) as measured by the formula ln(a/tanβ) (a = upslope 

contributing area per unit contour; tanβ = local slope angle). This metric and its distribution is an 

important component to the hydrologic model TOPMODEL and other hydrologic models, but is 

also used extensively to represent soil moisture in fields of ecology, forestry, and soil science.  

Newly available lidar data available statewide in Pennsylvania can produce DEMs with 

an accuracy and resolution that far exceed previously available elevation data. In this study, 

streams were modeled using lidar-derived DEMs of 1 m, 3 m, and 10 m resolutions using existing 

GIS software programs and compared to both actual streams and streams modeled using a 10 

meter National Elevation Dataset (NED) DEM. Results showed that the most accurate stream 

locations could be modeled using a lidar-derived DEM thinned to 3m resolution or smoothed 

using a mean smoothing filter. Also, when a 10 m resolution lidar-derived DEM was compared to 

the NED 10 m resolution DEM, the streams delineated with the 10 m lidar data were significantly 

better than those modeled with the 10 m NED data, showing that significant improvement in 
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accuracy can be achieved with no increase in data storage. When topographic index was modeled 

with multiple resolutions of lidar-derived DEMs, the spatial and statistical distributions were both 

very different, with finer resolution DEMs not accurately modeling areas of high TI. 

Additionally, depending on the flow accumulation algorithm used, there were differences in the 

change in statistical resolution with response to initial DEM resolution.  

Introduction 

Over the past thirty years, research has been conducted in many fields including 

hydrology, forestry, soil science, and geomorphology incorporating Geographic Information 

Systems (GIS). Commonly available hydrographic datasets are often derived from blue line 

streams on USGS topographic maps. These maps were created at a 1:24,000 scale and have often 

been shown to be missing streams, particularly first order perennial and intermittent channels 

(Colsen 2006). The National Hydrologic Dataset (NHD) produced by USGS is derived from 

maps at the 1:100,000 and 1:24,000 scale and is thus not designed for analysis at finer scales. In 

recent years, stream maps are being created through processing of digital elevations models 

(DEMs) using tools such as ArcGIS and TauDEM (Tarboton et el. 1991, Beven and Moore 1993, 

Garbrecht and Martz 1993). Unfortunately, the same problems with resolution, scale, and 

accuracy that occur with vector hydrographic models also apply to the commonly available 

DEMs. The most commonly available elevation datasets such as the National Elevation Dataset 

(NED) have not been shown to be sufficiently accurate to generate maps of headwater streams 

(Colsen 2006, James et al. 2007, Murphy et al. 2008).  

In the United States, headwater streams, including second order streams, first order 

streams, intermittent streams, and ephemeral streams make up at least 80 percent of the stream 

network and contribute many of the solutes (e.g. nitrogen, carbon) and sediment to a stream 
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system (Alexander et al. 2007, Meyer et al. 2007). Unfortunately, many of these un-named 

tributaries do not appear on any map and ones that do are often underrepresented by stream length 

(Colsen 2006). In the Ridge and Valley Province in Pennsylvania, many of these headwater 

streams occur in heavily forested ridges and are being threatened by development and energy 

production. Such headwater streams are providing valuable ecosystem services such as flood 

control, clean drinking water, groundwater recharge, removal of pollution and sediments from the 

stream system, and key habitats for plants and animals (Meyer et al. 2007, Peterson et al. 2001, 

Meyer and Wallace 2001). Headwater streams are also hotspots for biodiversity, ecosystem 

services, and denitrification (Meyer et al. 2007, McClain et al. 2003.) In order to protect these 

ecosystem services on the landscape, accurate spatial hydrographic data are needed in these 

headwater areas. Management objectives may require stream network delineations at multiple 

scales (Corwin et al. 2006), from identifying the point that flow begins to organize into ephemeral 

channels, to mapping of intermittent and perennial stream channels.  

Leading Ridge Experimental Watersheds, the site of this study, is in central Pennsylvania 

and is the site of both a long term hydrological watershed research and is situated within the 

Susquehanna/Shale Hills Critical Zone Observatory. Critical zone science focuses on the study of 

the interface between the solid earth and the atmosphere, including interaction between 

catchments and their streams (Brantley et al. 2007, Anderson et al. 2008). Recent advances 

relating terrain and topography to hydrology require not only accurate stream channel maps but 

also accurate terrain models of the entire catchment (Beven 2006). These improved datasets are 

essential as scientists are striving to gain an understanding of flow paths, residence times, and 

distribution of water through a catchment. Hydrologic models of the critical zone are based on 

many geographic attributes of headwater streams and watersheds including stream length, 

drainage area, channel slope, and distribution of topographic index (Beven and Moore 1993, 

Hornberger and Boyer 1995, Qu 2004). Nitrogen transport models also rely on accurate stream 
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network and watershed characteristic data because factors such as reach slope, time of travel, 

riparian zone characteristics, and watershed area can have significant impacts on model results 

(Cirmo and McDonnell 1996, Boyer et al. 2006).  

A new source of data that may improve stream network delineation, lidar (light detection 

and ranging) elevation data, are more frequently becoming available for local and regional 

studies. Pennsylvania, through the PAMAP program, which aims to create a digital basemap for 

Pennsylvania, recently acquired lidar data and compiled a lidar-derived DEM for the entire 

Commonwealth of Pennsylvania. This DEM has a resolution of 3.2 ft. (about 1 m) and a targeted 

vertical RMSE of less than 18.5 cm for some areas (DCNR PAMAP program, 

http://www.dcnr.state.pa.us/topogeo/pamap/lidar.aspx). This is not only a significant 

improvement to resolution, but also in accuracy. Previously available DEMs typically have 

vertical accuracies from about 2 m (NED) to 10 m (SRTM) (Maune 2007). Due to the 

improvement in accuracy over NED and SRTM elevation datasets, our assumptions about 

resolution and hydrologic modeling may need to be re-evaluated, and it should not be assumed 

that the highest resolution dataset will perform the best for all purposes.   

In addition to channel network delineation, another hydrologic attribute that is of interest 

to hydrologists, modelers, and ecologists, is topographic index (TI) as measured by the formula 

ln(a/tanβ) (a = upslope contributing area per unit contour; tanβ = local slope angle).  This metric 

and its distribution is an important component to the hydrologic model TOPMODEL (Beven and 

Kirkby 1979) and other hydrologic models, but is also used extensively in ecology (Sørensen et 

al. 2006), soil science (Blyth et al. 2004, Guntner et al. 2004), and forestry (Bader and Ruijten 

2008). The distribution of TI has been shown to be dependent on DEM resolution and grid size 

(Zhang and Montgomery 2004, Bruneau et al 1995, Kienzle 2004), but only limited work has 

been done to quantify the difference in spatial pattern in TI and its distribution caused by both 

improved resolution and accuracy from lidar-derived data (Straumann and Purves 2007).  



20 

 

In this study, we started with a 1 m lidar-derived DEM and generalized the data to create 

coarser-resolution data models to test the effect of resolution on accurate delineation of stream 

networks. Stream networks were modeled using GIS-based flow routing algorithms. Several 

previous studies have completed network modeling using lidar data (Colson 2006, Murphy et al. 

2008) and others have studied effects of resolution on metrics including TI ( Sørensen et al. 2006, 

Tenenbaum et al. 2006), but few studies have examined the difference between lidar-derived and 

photogrammetrically derived elevation datasets at similar resolutions. Although the available 

accuracy of lidar-derived DEMs far exceeds traditional DEMs, this new detail can also create 

complications. Because of the extremely high resolution and detail, roads, bridges, and ditches 

can appear in the DEM, causing inaccurate flow routing. By conducting network delineation at 

multiple resolutions and smoothing levels of the lidar-derived DEMs, it may be found that the 

most accurate models of stream channels are not produced by the highest resolution and most 

accurate original DEM. This may be because the smoothing and generalization removes some of 

the erroneous detail that can cause errors. Using a coarser resolution of lidar can also allow us to 

work with superior lidar-derived data without increasing our storage and processing demands.  

From this work, we make recommendations on a methodology of using multiple scales of 

lidar for stream network delineation depending on the objectives. We found that 1 m, 3 m, and 10 

m lidar-derived DEMs all led to a significant improvement of stream network delineation over 10 

m NED. Although there was no difference in computational efficiency between the thinned 10 m 

lidar dataset and the NED, the lidar dataset represents the terrain much more accurately. Also, 

there were benefits to not using the highest resolution data in our analysis due to error caused by 

features such as roads, culverts, and some vegetation. From our data, we also explore the 

implications of using lidar data to improve our understanding of the hydrological response of a 

watershed through the eyes of a standard topographic index, widely used to consider how a 

watershed responds to incoming precipitation in terms of wetness and propensity for saturation.  
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Methods 

Study Area 

The study area, Leading Ridge Watershed One (Figure 2-1), is a 119 ha watershed 

located in the Ridge and Valley Province of Pennsylvania. The elevation of Leading Ridge 

Watershed One ranges from 260 m at the mouth of the watershed to 512 m at the top of Leading 

Ridge, which forms the north-western border of the watershed. Since this watershed is in the 

Ridge and Valley Province, its hydrologic network tends to form a trellis pattern instead of the 

more common dendritic pattern. The geologic formation underlying the watersheds consists of 

deeply dipping strata ranging from resistant Tuscarora quartzite and sandstone at the top of the 

watershed to less resistant Rose Hill shale that comprises the valley area (Shultz 1999). This 

terrain is consistent with that which makes up most of the Ridge and Valley Province, which is 

generally characterized by canoe-shaped valleys and long, linear, parallel ridges formed by 

differential erosion. Valleys tend to be underlain by limestone, dolomite, and shale, while ridges 

are formed by resistant sandstone and quartzite. Ridges tend to be extremely steep and rocky and 

the topography is generally well-drained (Shultz 1999).  

The watersheds contain a mature oak/hickory forest approximately 100 years of age. This 

area was used extensively for charcoal production prior to 1900, and charcoal pits can still be 

found scattered throughout the site (Robinson 1959). The southern section of the watershed was 

probably grazed until the 1930s, when farmers were paid to abandon their land. A small salvage 

cut occurred on the site in 2006 following a blowdown event, and the watersheds experienced 

significant gypsy moth mortality over the past 20 years (pers. com. Joseph Harding 2009).  

This site was chosen in part because of the history of the area being used as an 

experimental watershed and the vast hydrologic dataset that currently exists for the watershed. 
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The Leading Ridge Watershed Research Unit was established in Penn State’s Stone Valley 

Experimental Forest of central Pennsylvania in 1959 as paired watersheds to study the hydrologic 

response of different forest practices. There are three watersheds that make up the site of 43, 104, 

and 123 ha in size. Each watershed received a different vegetation treatment between the years of 

1967-1977. These treatments ranged from no disturbance to a clear-cut and herbicide application 

applied over three years to completely remove vegetation (Lynch and Corbett 1990). In addition 

to these treatments, Leading Ridge has a rich history as a living laboratory. In addition to historic 

hydrologic records covering 50 years of climatic variability, there is also a myriad of soils, 

climate, and water chemistry data for the watersheds (Lehman 1962, Hornbeck 1962). Watershed 

One, the site of this study, served as the control in these studies and did not receive any forest 

treatments.  

In addition to being used as the Leading Ridge Watershed Research Unit, the watersheds 

are within the Shaver’s Creek watershed which is being used as part of the Susquehanna/ Shale 

Hills Critical Zone Observatory (CZO), an interdisciplinary observatory aiming to quantitatively 

predict creation, evolution, and structure of regolith as a function of the geochemical, hydrologic, 

biologic, and geomorphologic processes operating in a temperate, forested landscape (Anderson 

et al. 2008). The Susquehanna/Shale Hills CZO is one of six watershed-scale observatories 

supported by the National CZO project.   

 

Figure 2-1: Location of the Leading Ridge watersheds in the Ridge and Valley province of Pennsylvania. 
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Field Mapping of Stream Network 

As a necessary first step, we needed to address the question of what the ―true‖ stream 

network was in this site.  By working on the ground to physically map the stream channels, we 

assumed for our study that this is equal to truth. 

In order to measure the location of the field stream network, stream channels were 

mapped with a sub-meter accuracy GPS unit. Starting at the gauging station on Leading Ridge 

Watershed One, a reconnaissance was conducted on the stream network using a Trimble GeoXT 

GPS unit with differential correction during a week in January of 2009 when the temperatures did 

not rise above freezing to reduce the impact of snowmelt on streamflow. A total of 47 points were 

collected that marked the location of every visible channel convergence or divergence. All points 

had water flowing over them at the time of the survey. This survey continued, starting at the weir 

and working upstream until all channels in the watershed were marked and all points of stream 

convergence or divergence were recorded. Additionally, the locations of all springs were 

recorded. Points were post-processed using Trimble Pathfinder software to provide sub-meter 

accuracy. 

DEM Data Sources 

The heart of the study is delineating stream networks from DEMs and determining which 

DEM models streams most accurately. We compared ground truth streams (above) to streams 

delineated from DEMs: lidar- based (at multiple resolutions) and to older DEM products based on 

photogrammetry conducted at a scale of 1:24,000 that are today’s standardly available national 

dataset (NED). 
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Lidar data were collected as part of the PAMAP lidar program in 2007 during leaf-off 

conditions in order to generate the most accurate bare earth model. Post spacing for the lidar 

return used for the DEM generation was 1.4 meters, with a vertical RMSE of 18.5 cm in open 

areas and 37 cm in vegetated or forested areas. This was one of the first and most accurate state-

wide lidar datasets collected. As part of the project, a 3.2 ft. (approximately 1 m) resolution DEM 

was produced, along with 2 ft. (0.61 m) contour lines and breaklines by BAE systems. All 

finished products were checked for quality and accuracy (PAMAP LiDAR QAQC report 2007). 

For this study, the independently produced 3.2 foot resolution DEM was used as the original 1m 

DEM. All of these data are available publicly at the Pennsylvania Spatial Data Access (PASDA, 

www.pasda.psu.edu).  

The lidar-generated DEM was compared to a photogrammetrically derived National 

Elevation Dataset (NED) 1/3 arcsecond DEM which has a horizontal resolution of approximately 

10 m (Gesch 2007).  

DEM Processing and Network Modeling 

In order to assess the effect of multiple resolutions, accuracies, and smoothing 

techniques, the original lidar-derived DEM was manipulated in several ways prior to any GIS 

hydrologic modeling. First, the DEM was resampled using the nearest neighbor method to 3 m 

and 10 m resolutions. These resolutions were chosen to sample in a logarithmic manner that 

approximates a range of scales from the finest available resolution to traditionally available 

resolutions. The nearest neighbor method was used to ensure that no interpolation was taking 

place, but data were simply being removed from the dataset. Additionally, to test the impact of 

smoothing, a 3 x 3 moving window mean smoothing filter from ArcGIS spatial analyst tools was 

applied to the original lidar-derived DEM twice to remove localized highs and low. All 
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derivations of the DEMs were then filled to remove inward-draining depressions using the 

ArcGIS fill tool in spatial analyst. Flow direction was calculated using the flow direction tool in 

ArcGIS which computes flow direction using the D8 method (O’Callahan and Mark 1984), 

followed by flow accumulation. Flow accumulation was also calculated using the D∞ method 

(Tarboton 1997) in TauDEM for comparison purposes and to calculated the topographic index.  

Many different methods have been proposed for modeling flow accumulation and 

contributing area. The simplest algorithm, D8 (O’Callaghan and Mark 1984), has been shown to 

model streams into straight, parallel channels that often do not accurately reflect natural stream 

channels. Others methods such as Rho8 (Moore et al. 1993) and D∞ (Tarboton 1997) have 

attempted to correct this problem by allowing flow to be directed into multiple cells. Although 

these methods may represent more accurate hillslope flow patterns, channels modeled using these 

methods tend to show dispersed flow in valleys which can be inaccurate. These algorithms are 

also more complicated and require greater computing power. With the improvements in elevation 

data provided by lidar data, we may be able to effectively use simpler algorithms, particularly in 

light of the increased storage and processing requirements of lidar data. With accurate elevation 

data, simpler algorithms such as D8 may provide an adequate model of flow accumulation, 

particularly when the goal is network delineation.  

Stream networks were delineated by using ArcGIS Spatial Analyst raster calculator to 

identify cells in the D8 flow accumulation layer that had a minimum threshold of cells draining 

into them, which defines the drainage area of what is classified as a stream. The threshold was set 

at 2.5 ha, which is relatively low in order to identify all ephemeral and intermittent channels. 

Identifying the appropriate threshold for stream delineation is dependent on the use and purpose 

of the stream data and thus was outside the scope of this study. The same procedures were also 

performed on the NED 1/3 arcsecond DEM. Stream networks were assessed by measuring the 

shortest distance from each GPS point on the channel to a modeled stream channel. These 
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distances were analyzed using a Wilcoxon rank sum test, a non-parametric hypothesis test, to test 

if there was a significant difference between the means of measured variables.   

Watersheds were delineated for each of the Leading Ridge Watersheds using the weir 

locations as pour points in ArcGIS and using the watershed function to identify all cells flowing 

through each pour point. Watersheds were computed using all five derivations of the DEM in 

order to compare results of different resolutions and accuracies of DEMs on watershed 

delineation.  

Topographic Index 

We explored implications of improved stream networks versus poorly defined networks 

on hydrological response of the watershed through the eyes of a standard topographic index, 

widely used to consider how a watershed responds to incoming precipitation in terms of wetness 

and propensity for saturation. For each DEM dataset, topographic index (TI) was calculated using 

the formula ln(a/tanβ) (a = upslope contributing area per unit contour; tanβ = local slope angle). 

Contributing area was calculated using both the TauDEM D8 method (Tarboten et al. 1991) and 

the TauDEM D∞ method (Tarboton1997). With the D8 method, flow accumulation was 

converted to contributing area by multiplying by the cell area and dividing by cell size 

(resolution). The D∞ flow accumulation method automatically calculates contributing area. For 

each dataset, statistical and spatial distributions of TI were modeled and descriptive statistics 

were analyzed using R (R Development Core Team, 2010). TI values were calculated that 

represent the top 5% and 10%, of cells in each DEM. Percent of cells over TI values of 6 and 8 

were also calculated for each DEM. Additionally, spatial distributions of TI were examined to 

explore how differences in true resolution and data sources impact spatial distribution of TI.  
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Results 

Channel Networks 

All the channel networks modeled using the lidar-derived DEMs were significantly more 

accurate than channels modeled using the NED DEM (p =0.001). This is probably due to the 

ability of lidar-derived DEMs to more accurately represent small channel features on the 

landscape. The modeled channel networks with the smallest mean and median distance from GPS 

points to the channel location were from the smoothed 1 m resolution DEM and from the 3 m 

resolution DEM (Table 2-1). Median distances for lidar-derived DEMs ranged from 2.35 m (3 m 

lidar) to 3.26 m (1 m lidar). Median distance for the NED dataset was 16.43 m. Interestingly, all 

of the lidar-derived DEMs that had been smoothed or generalized produced slightly more 

accurate channel models than the original DEM, although not significantly so. Results were 

analyzed using a Wilcoxon rank sum test due to the non-normal distributions of the data. There 

was no significant difference between the lidar-derived products, but all lidar-derived products, 

including the DEM thinned to 10 m performed significantly better than the NED with p values 

less than 0.001. 

Table 2-1: Descriptive statistics for distances between GPS locations on the channel and closest modeled 

channel, measured in meters. ** indicates values significantly different from the NED dataset with a p 

value of less than 0.001.  

DEM  Mean Distance Median Distance  SD 

1 m lidar 12.4** 3.3 19.5 

Smoothed 1 m lidar 8.9** 2.7 15.4 

3 m lidar 8.5** 2.4 16.3 

10 m lidar 12.2** 3.1 22.2 

10 m NED 33.3 16.4 39.8 

  

Boxplots of distances between each GPS point and the closest modeled channel for all 

five DEM derivatives are shown in Figure 2-2. For the lidar-derived stream network models, 

outliers are the same stream locations, suggesting that certain stream networks were not modeled 
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accurately using any of the lidar-derived DEMs. Locations of modeled channels and GPS points 

on those channels are shown in Figure 2-3 for each DEM derivative. Points are graduated by 

color and size based on the number of standard deviations they occur from the mean. In Figure 2-

3, you can see that the same GPS’d channel locations are the three furthest outliers for all four of 

the lidar-derived modeled channel networks. This is not true for the channels modeled using the 

NED DEM which represents different points as outliers in the box plot.  

Figure 2-2: Boxplot for distances between GPS locations on the channel and nearest modeled channel. 
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(a) (b) 

  
(c) (d) 
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(e) 

 

 

Topographic Index 

 Topographic Index (TI) was calculated for the lidar-derived 1 m, 1 m smoothed, 3 m, and 

10 m DEMs, as well the 10 m NED DEM using the D8 flow accumulation method. For the D8 

modeled TIs, statistical distributions of TI were modeled and descriptive statistics were analyzed 

using ArcGIS and R (Table 2-2, Figure 2-4). In addition to exploring the statistical distributions, 

values of the top 5% and 10% of TI were calculated and mapped (Figures 2-6, 2-7) to represent 

how the watershed would wet under different intensity hydrologic events. Additionally, the 

percent of the watershed containing TI values greater than 6 and greater than 8 are shown in 

Table 2-2.  

Figure 2-3: GPS points colored by distance from closest modeled stream channel for (a) original 1 m lidar 

DEM, (b) 1 m lidar DEM smoothed, (c) 3 m lidar DEM, (d) 10 m lidar DEM, and (e) 10 m NED DEM. 

Points are graduated by number of standard deviations they fall from the mean. 
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The DEMs with finer resolutions tend to model higher TI values, and a greater 

percentage of their area is represented by high TI values. In general, the maximum value of TI 

values increased as the resolution decreased, ranging from 15.45 with the NED DEM to 21.46 

with the smoothed 1 m DEM.  DEMs with finer resolutions also had a greater percentage of cells 

that have relatively high values. For example, the smoothed 1 m DEM had almost 20% of its cells 

with a TI value greater than 6, while the NED DEM had only 7.4% of its cells with a greater TI 

value than 6. Values for percent of area with TI values greater than 8 ranged from 5.71% using 

the 1 m lidar to 2.4% using the NED. This can have implications for hydrologists modeling the 

percentage of cells that would be wet in certain types of hydrologic events. The statistical 

distributions were also different with the NED DEM distribution having a much higher kurtosis 

value than the other distributions.  

 

 

 

 

 
Table 2-2: Minimum, maximum, mean, maximum 5%, maximum 10%, percent of values over a TI of 6, 

and percent of values over a TI of 8, along with descriptors of the distribution of each TI calculated using 

the D8 method.  

DEM  Min Max Mean Max 

5% 

Max 

10 

% 

% over 

TI 6 

% 

over 

TI 8 

SD Skew Kurtosis 

1 m lidar  -0.60 20.95 4.13 8.16 6.58 15.10% 5.71% 2.03 1.59 7.52 

smoothed 1 m 

lidar  

0.00 21.46 4.69 8.06 6.73 19.73% 5.42% 1.81 1.35 7.23 

3 m lidar -0.40 18.69 3.92 7.83 6.70 17.42% 5.09% 2.07 1.36 5.84 

10 m lidar  0.33 16.48 3.83 7.40 6.26 13.04% 3.29% 1.85 1.19 5.45 

10 m NED  0.63 15.45 4.23 6.58 5.79 7.40% 2.4% 1.48 1.43 8.61 
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Figure 2-5: Distributions of Topographic Index for the original 1 m lidar-derived DEM, 1 m smoothed 

DEM, 3 m lidar-derived DEM, 10 m lidar-derived DEM, and the NED DEM. Also included is an inset of 

the tail of the distribution.  
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(a) (b) 

  
(c) (d) 
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(e) 

 

 

Figure 2-5: Topographic Index values using the D8 method of flow direction for (a) original 1 m lidar 

DEM, (b) 1 m lidar DEM smoothed, (c) 3 m lidar DEM, (d) 10 m lidar DEM, and (e) 10 m NED DEM. 

Note the differences between the 10 m NED and the 10 m lidar-derived values.  

(a) (b) 
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(c) (d) 

  
(e)  

 

 

Figure 2-6: The highest 5% of topographic index values using the D8 method of flow accululation for (a) 

original 1 m lidar DEM, (b) 1 m lidar DEM smoothed, (c) 3 m lidar DEM, (d) 10 m lidar DEM, and (e) 10 

m NED DEM.  
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(a) (b) 

  
(c) (d) 
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(e)  

 

 

Figure 2-7: The highest 10% of topographic index values using the D8 method of flow accumulation for (a) 

original 1 m lidar DEM, (b) 1 m lidar DEM smoothed, (c) 3 m lidar DEM, (d) 10 m lidar DEM, and (e) 10 

m NED DEM.  

 

Several patterns emerge when examining spatial patterns of TI (Figure 2-5). Finer DEMs 

model parallel, repeating patterns of high and low TI values perpendicular to the hillslope, while 

coarser resolution DEMs tend to have fewer areas showing a high TI and more space in between 

these features. All resolutions show more areas of high TI than the number of stream channels 

validated with GPS on the landscape, although these areas of modeled high TI values were not 

field checked to determine if they were in fact wet during high volume hydrologic events. Finer 

resolution DEMs (1 m, 3 m) tend to model high values of TI at higher elevations in the 

watershed, while coarser resolutions (10 m) have highest values stopping around the mid-point of 

the watershed. This is noteworthy because there are no drainage features past the mid-point of the 
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watershed. Therefore, the finer resolution TI maps do not reflect the patterns of stream networks 

and surface flow on the landscape.  

In order to quantify the distribution of wet cells on the watershed, a line was drawn 

across the watershed that connects the springs that initiate the stream network. Above this line in 

the watershed, no channel features or wet areas were found. For each DEM, the percentage of wet 

cells measured by either the top 10% or 5% of TI values that are found in the upper portion of the 

watershed are shown in Table 2-3. It is clearly shown that the higher resolution DEMs contain a 

majority of their wet cells at both the top 5% and 10% threshold in the upper portion of the 

watershed. As the resolution decreases, the number of cells being represented as wet in the top of 

the watershed decrease. These patterns suggest that TI may be problematic when used with finer 

resolution data such as lidar and that patterns of high TI on the watershed may not be accurate.  

Table 2-3: Percentage of wet cells found in the upper portion of the watershed by DEM derivative.  

Percent of wet cells in the upper 

portion of the watershed 

1 m 

DEM 

1 m smoothed 

DEM 

3 m 

DEM 

10 m 

DEM 

NED 

DEM 

Top 10% of TI Values 57.2% 58.8% 52.7% 24.9% 19.3% 

Top 5% of TI Values 55.9% 56.1% 36.9% 5.6% 13.0% 

 

 

TI was also calculated using D∞ flow contributing area algorithm for a 1 m lidar-derived 

DEM, a 3 m lidar-derived DEM, and a 10 m lidar-derived DEM for comparison purposes (Table 

2-4, Figure 2-8, Figure 2-9, Figure 2-10). Overall, values were higher, with no values being 

identified as negative. This seems to be caused by higher values in the D∞ contributing area grid 

in comparison to the D8 contributing area grid. The pattern of higher D∞ TI values with 

relationship to resolution is reversed in comparison to the D8 method TI values, with finer 

resolution DEMs showing lower mean D∞ TI values (Table 2-4). Also, the values representing 

the top 5% and top 10% of values are higher with the larger resolution datasets. When viewing 

the spatial patterns of TI on the watershed, patterns are similar to those shown by the D8 TI, with 

the finer resolutions showing high values across the entire watershed including the top portion, 
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and coarser resolutions representing more of the higher TI values in the bottom portion of the 

watershed where stream networks are found (Figure 2-9, Figure 2-10). The patterns formed by 

D∞ TI appear slightly more realistic than that delineated with the D8 method, with fewer straight, 

parallel areas of alternating TI values and slightly broader areas of wet and dry regions, 

particularly in the larger resolution datasets.  

Table 2-4: Minimum, maximum, mean, maximum 5%, and maximum 10% of TI values for TIs calculated 

using the D∞ method.  

DEM  Min Max Mean Max 5% Max 10 % 

1 m lidar (D∞) 1.16 24.43 6.61 10.65 9.65 

3 m lidar (D∞) 2.85 23.30 7.34 10.95 10.07 

10 m lidar (D∞) 4.02 22.21 7.87 11.15 10.30 

 

 

 

 

(a) (b) 
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(c)  

 

 

Figure 2-8: Topographic Index values using the D∞ method of flow accumulation for (a) original 1 m lidar 

DEM, (b) 3 m lidar DEM, and (c) 10 m lidar DEM.  

(a) (b) 
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(c) 

 

 

 

Figure 2-9: The highest 5% of topographic index values calculated using the D∞ method of flow 

accumulation for (a) original 1 m lidar DEM, (b) 3 m lidar DEM, and (c) 10 m lidar DEM.  

(a) (b) 
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(c)  

 

 

Figure 2-10: The highest 5% of topographic index values calculated using the D∞ method of flow 

accumulation for (a) original 1 m lidar DEM, (b) 3 m lidar DEM, and (c) 10 m lidar DEM.  

Watershed Delineations 

 Watersheds were delineated with the ArcGIS watershed tool using the weirs in 

Watersheds 1, 2, and 3 as the pour points (Table 2-5, Figure 2-11). Watershed areas were slightly 

different as measured with the different DEMs, although there was not bias with one DEM 

producing consistently larger or smaller watersheds (Table 2-5). The Leading Ridge Watershed 

One, which showed the most variability, ranged from 121.7 hectare (ha) using the 3 m lidar-

derived DEM to 113.5 ha using the NED DEM. The other two watersheds were more similar in 

size as modeled by all DEMs.  

By examining the delineations (Figure 2-11), you can see that watershed boundaries were 

slightly shifted on the hillside depending on which DEM was used for their delineation. There 
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was more similarity among delineations done with different resolutions of lidar than between the 

10 m lidar and 10 m NED datasets. Watershed one delineated using the NED dataset is between 

5.5 and 7 ha smaller than the watershed delineated with the lidar datasets. On the boundary 

between watershed one and watershed two, you can see the range of boundaries, with the NED 

dataset modeling the watershed boundary farthest to the east, and the 3 m lidar dataset modeling 

the boundary farthest to the west. The differences among the lidar datasets is probably caused in 

part by the effect of the road across the watershed on the flow modeling algorithms used to 

delineate the watershed. The watershed boundary modeled with the 1 m DEM shows the 

boundary further east than the other lidar datasets because flow is modeled to the west down 

along the side of the road before it crosses the road. It is hard to know if this is in fact occurring 

in the field, but it could be because there is no drainage feature such as a culvert crossing the road 

in this area. On the other watersheds, the boundaries delineated with the NED dataset tend to be 

consistently west of the lidar-delineated boundaries.   

 

 

Table 2-5: Areas of Leading Ridge watersheds in hectares (ha) delineated using different DEM products. 

DEM  Leading Ridge 1 (ha) Leading Ridge 2 (ha) Leading Ridge 3 (ha) 

Lidar-derived 1 m 119 47.7 107 

Smoothed 1 m DEM 120.1 44.5 106.2 

Lidar-derived 3 m  121.7 44.1 106.7 

Lidar-derived 10 m 120.6 44.8 107.1 

NED 10m 113.5 49.5 108.7 
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Figure 2-11: Watersheds delineated using the NED DEM, lidar-derived 1 m DEM, smoothed 1 m lidar-

derived DEM, 3 m lidar-derived DEM, and 10 m lidar-derived DEM.  
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Discussion 

Stream Networks 

Most obvious throughout the network models is the striking difference between the 

models produced by the lidar-derived DEM and the NED DEM. While the lidar-derived DEMs 

may have misrepresented a few of the side channels coming off of the hill slope, they all modeled 

the two branches of the main channel accurately within the resolution of the data source. This was 

not the case for the NED DEM which misrepresented the location of one of the main channels by 

over 30 meters due to errors in the original DEM (Figure 2-12). Colson (2006) and Murphy et al. 

(2008) both also found improvements using lidar, but the scale of the error using the NED DEM 

was still notable.  

a.  b.  

  

Figure 2-12: Most accurate lidar-derived stream network (a) (3m DEM) compared to the NED stream 

network (b). White circles are GPS channel locations.  
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Despite this improvement, there were several locations in the watershed that were not 

accurately modeled by any of the DEMs (Figure 2-13). These include the center of the watershed 

which is made up of several dispersed springs and intermittent channels, and one particular 

channel on the western branch of the watershed. In the case of the center of the watershed, there 

may be a soil or geologic feature impacting the hydrology, although this is not apparent from 

available soil or geologic data. It could also be caused by the road intercepting the flow from this 

region and directing it to the western side of the drainage. This area accounts for some of the 

outliers in the box plots, particularly the 3 m lidar-derived DEM since all other points were 

mapped so accurately. On the west side of the watershed, a channel was mapped in the field that 

was not modeled using any of the DEM products. This may be a result of the road through the 

watershed capturing water in the ditch along the road and channeling it through a culvert. While 

the flow would normally be dispersed through the soil, the cut from the road and ditch along its 

berm captured water from a broad area and channelized it under a culvert. Tenenbaum et al. 

(2006) found that in urban areas, lidar did not always accurately model flow due to channelized 

features such as this. Murphy et al. (2008) burned culverts into the DEM prior to modeling, so 

those issues weren’t seen, although burning in culverts would not solve this modeling problem 

since this problem was due to an increase of field channelization and not channels being modeled 

in the incorrect location.  
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Figure 2-13: Locations in the watershed that were not modeled accurately.  

Several patterns are represented in the box plots of the distance distributions of the lidar-

derived DEMs. First, all of the distributions show substantial skew with most of the GPS points 

lying close to the channel and a few points located far from the channel. On the boxplot of the 3 

m distribution, any point located over 5 m away from the modeled channel has been identified as 

an outlier, highlighting how closely the modeled stream represented the actual stream. It should 

be noted that the median distance between the modeled stream and actual GPS points is smaller 

than the resolution of the dataset for the 3 m and 10 m lidar-derived DEMs. The NED modeled 

streams, by contrast, show large amounts of error throughout the network, with many channels 

being modeled tens of meters away from their actual location.  

Despite its superior resolution and accuracy, the 1 m resolution lidar-derived DEM is not 

the most effective DEM to use for hydrologic modeling in managed watersheds. One of the 

channels in the eastern portion of the watershed was modeled particularly inaccurately (Figure 2-

14). Tenenbaum et al. (2006) found that errors in a 1 m lidar-derived DEM created errors in soil 
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moisture modeling and hypothesized that those errors may be due to inaccuracies in the initial 

DEM due to tree roots and other non-ground features being classified as ground. Although using 

the 1m smoothed or the 3 m DEM did not result in significant improvements as measured by a 

Wilcoxon rank sum test, both appear to result in more accurate channel models than those 

modeled from the original 1 m DEM. One reason may be the inability of lidar to identify features 

on the landscape such as small dams, culverts, and ditches. Although major features such as 

bridges and dams have been identified using aerial photography and burned into the lidar DEM, 

small dispersed features such as culverts, ditches, and water bars in small logging roads, skid 

trails, and old roads or trails cannot be identified. Since culvert locations are often not known in 

wooded, rural areas, without a way to automate culverts, smoothing and reducing resolution both 

effectively minimize the impact of these features on flow modeling.  

 

Figure 2-14: 1m lidar-derived stream network with errors highlighted.  

Another interesting result is that the lidar-derived DEM that has been thinned to 10 m 

resolution still performs as well as the original DEM. The mean and median distances from GPS 

channel to modeled channel were both slightly smaller from the 10 m lidar-derived DEM than 
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with the original DEM, and there was no significant difference between distances measured with 

any of the lidar-derived DEMs. This is contrary to the results of Zhao et al. (2010) who found that 

a 10 m lidar-derived DEM was outperformed at generating hydrologic modeling parameters by a 

higher resolution DEM. Zhang (2006) however, found that a 10 m resolution lidar-derived DEM 

was adequate for erosion prediction using hydrologic variables. The ability of a 10 m resolution 

DEM to perform adequately could be very important to managers trying to delineate stream 

channels on a landscape scale. The improvement achieved in going from the 1/3 arcsecond NED 

to the 10 m lidar-derived DEM is significant, and it is at no cost in storage and processing 

because both of these are the same for the 10 m lidar-derived DEM as for the 10 m NED DEM. 

Also, by examining the hillshades created by the different DEM products, it can be seen from 

Figure 2-15 that the 10 m lidar-derived DEM accurately represents smaller topographic features, 

whereas the NED misrepresents the finer scale topography as distorted relics of contour lines. 

Horizontal, parallel lines are visible in the channel network modeled using the NED DEM that are 

probably errors from the methodology used to generate USGS DEMs. Also, there is an error in 

the main stream network delineated with the NED. At one point, the major channel of the stream 

is modeled over 30 meters in the wrong direction. Most of the small channels coming off the 

hillside are also modeled in the wrong location.  
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a. b. 

  
Figure 2-15: Hillshade derived from a 10 m lidar-derived DEM (a) and from a 10 m NED DEM (b) 

 

For the purpose of this research, any area accumulating flow of greater than 2.5 ha was 

classified as a stream. This relatively small threshold was chosen due to the focus of the 

investigation being on the ability to use lidar to improve the location accuracy of various stream 

networks. By choosing a higher flow accumulation threshold, fewer channel reaches would be 

identified. The flow accumulation threshold that a manager or modeler chooses to use depends on 

their goals. Despite extensive research in channel initiation (Montgomery and Dietrich 1989, 

Tarboton et al.1991, Dietrich et al. 1992) there tends to be uncertainty when identifying 

ephemeral or intermittent channels based on flow accumulation models. Due to the compounding 

properties of a channel network, extracting perennial channels can be accomplished fairly reliably 

by increasing the flow accumulation threshold to approximately 30 ha, although some 

intermittent and ephemeral channels will be missed at this threshold. If the goal of the user is to 

reduce the chance of over representing the stream network, this would be a more appropriate 
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threshold. If the goal of the user is to reduce the chance of missing stream reaches, a threshold 

closer to 2.5 ha is probably more appropriate. By decreasing the threshold, there is risk of 

identifying areas as streams that show no physical characteristics of a stream, but that still have 

water accumulating and moving through the area. This may be desirable, particularly when 

performing construction that may impact this flow of water such as building roads, well pads, or 

other construction projects.  

Even using a conservative estimate of stream lengths, an improved methodology using a 

10 m resolution DEM can increase the number of stream miles measured over either NHD 

datasets or blue line streams (Figure 2-16). With this improved dataset, we can begin to protect 

headwaters streams and their riparian zones. The importance of the riparian zone has long been 

understood for protecting water quality, providing a hotspot for biodiversity, and mitigating run-

off, sedimentation, and flooding (Naiman and Decamps 1997). Protection efforts have been 

growing, particularly in Pennsylvania with the effort to reduce nutrient inputs to the Chesapeake 

Bay (Baker et al. 2006). Although much progress has been made in protecting riparian zones, we 

can only protect what we know about, and currently almost all true first order streams are not 

found on digital hydrological datasets. Baker et al. (2007) found a large effect from resolution 

used for stream maps on buffer analysis, and recommended all buffers analysis work be done at 

no coarser than a 1:24,000 scale, with finer scale maps preferable.  
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Figure 2-16: Example of a 10 m lidar-derived stream network (green) compared to the previously available 

NHD stream network (blue).  

Topographic Index 

The D8 method was chosen to calculate flow accumulation for much of this study 

although some studies have suggested that a multi-directional flow algorithm may be better 

(Sørensen et al. 2006) in order to simplify the analysis and to use the original definition of TI that 

was proposed by Beven and Kirkby (1979). Also, D8 was the preferred flow accumulation model 

for channel modeling in this watershed. The difference between the statistical TI distribution for 

NED DEM and the 10m lidar-derived DEM is notable. Many studies have been conducted to 

explore the impact of changing resolution on TI (Zhang and Montgomery 1994, Quinn et al. 

1995, Sørensen and Seibert 2007), but this demonstrates that different DEM products with the 

same resolution can produce very different TI distributions. Also, much of the difference in the 

statistical distributions is in the top 10%, which represent cells that would become water saturated 
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with hydrologic events. All of the statistical distributions of lidar-derived DEMs were more 

similar to one another than the NED derived DEM was to any of the lidar-derived DEMs.  

There are also differences in spatial pattern at different resolutions. High values of 

topographic index are found higher up in the watershed as resolutions improve due to the 

dependence on contributing area. This was also noted by Sørensen and Seibert (2007). At the 

highest resolutions, values at the top 5% and 10% of TI can be found across the watershed, 

including at the highest elevations and there is no increase in the percentage of ―wet‖ cells as you 

move down the watershed (Figure 2-17, Table 2-3). It is important to note that different 

resolutions of data may be providing much different information when modeling TI. There were 

some negative TI values which have been previously documented in TI studies evaluating  lidar-

derived DEMs (Straumann and Purves 2007). Overall, the results of this study suggest that TI 

modeled at a scale less than 10 m may not accurately depict soil moisture of vegetation patterns. 

Care should be taken when using TI for ecological or forest classification studies to validate the 

relationship between vegetation and modeled TI (Sørensen et al. 2006). Perhaps another metric 

such as curvature or roughness, or TI calculated using a slightly different methodology would 

better depict these relationships.  

It is also interesting that TI calculated using a D∞ flow accumulation algorithm resulted 

in very different values for TI, different patterns of TI on the landscape, and different patterns in 

changes in TI values with changing resolution. In the literature, many different methodologies of 

calculating TI are often used, and this highlights the differences that can be caused in TI with 

changes to resolution, DEM data source, and methodology.  
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Figure 2-17: Top 10% of TI for the 1m lidar-derived DEM. Areas of high TI extend to the top of the 

watershed.  

 

There is also a notable difference between patterns formed from the lidar-derived 10 m 

DEM and the NED DEM. Comparing the spatial distributions of TI to the stream network models 

and GPS locations of springs and channels (Figure 2-18) shows substantial discrepancy between 

the NED TI and channel locations. Thus, it can be misleading to use NED-derived TI to model 

spatial patterns of wetness in a small watershed. By using a coarser resolution of NED data 

(larger than 10 m), larger, dominant features may be more accurately represented, but at the 10 m 

resolution, the spatial locations of wet areas formed by small channels are not accurately located 

on a TI map.  
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Figure 2-18: Distribution of the top 5% of TI values as derived using the D8 method and NED DEM and 

stream and spring locations as mapped in the field.  

Conclusions 

Using lidar may improve ability to identify and protect small headwater streams that are 

currently missing from maps due to lack of accurate hydrographic data. For landscape scale 

modeling, DEMs thinned to 3 m and 10 m both perform effectively, particularly in areas where 

culvert and ditch placement may not be known. Headwater streams were more accurately 
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modeled by thinned or smoothed DEMs than by an original 1 m DEM due primarily to the 

presence of a forest road on the landscape. There seemed to be an advantage for using coarser 

resolution DEMs for modeling topographic index as well, as areas of high TI were more 

accurately modeled in the lower portion of the watershed by coarser resolution DEMs. Overall, 

the 10 m lidar-derived DEM offers a significant improvement in modeled stream channel 

accuracy with no increase in storage capacity, and is based on data available for the whole state of 

Pennsylvania.  

By improving the spatial hydrographic information that managers, planners, and agencies 

have to work with, we can improve our ability to protect the headwater streams that play such a 

valuable role in ecosystems. We may also be able to improve hydrologic models and nutrient 

transport models to better predict hydrologic response, nutrient transport, and denitrification in 

headwater systems. By incorporating lidar-derived DEMs into analysis, we can significantly and 

consistently improve understanding of headwater channel networks and, consequently, critical 

zone processes, downstream responses, and ecosystem processes occurring in all stream 

networks. 
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Chapter 3 

 

Evaluating state-wide lidar data product for characterizing surface roughness 

in complex terrain in the forested Ridge and Valley Ecoregion of 

Pennsylvania 

Abstract 

The availability of light detection and ranging data (lidar) has resulted in a new era of 

landscape analysis. For example, the subsequent improvements in terrain data now make it 

possible to model micro topography over a large geographic area via remotely sensed techniques. 

In this study, two types of lidar-derived data were used: a 1 m resolution DEM available 

statewide in Pennsylvania and a research grade 1 m DEM generated for the Susquehanna/Shale 

Hills CZO. Roughness was calculated from lidar-derived DEMs using standard deviation of 

slope, standard deviation of curvature, a pit fill index, and as the difference between a smoothed 

splined surface and the original DEM. These were compared to surveyed micro-plots and 

transects placed in the field to obtain accurate surface models of diverse soil and terrain. Results 

suggest that the research grade lidar did not improve roughness modeling in comparison to the 

state-wide lidar and that resolution and initial point density may not be as important as the 

algorithm and methodology used to generate a lidar-derived DEM for roughness modeling 

purposes. Using lidar, patterns of roughness were identified that were associated with different 

landforms derived from hydro-geomorphic features such as stream channels, gullies, and 

depressions. Lowland areas tended to have the highest roughness values for all methods, with 

other areas showing conflicting but distinctive patterns of roughness.  
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Introduction 

Lidar (light detection and ranging) is changing the way scientists view landscapes. Over 

the past several decades, geomorphologists, soil scientists, ecologists, foresters, and hydrologists 

have increasingly utilized terrain data for landscape classification (ECOMAP 1993, Cleland et al. 

1997, Franklin 1995, Myers 2000), predicting forest communities (Bolstad et al. 1998), predicting 

soil properties (Dikau 1989, Moore et al. 1993), and understanding riparian zones and systems 

(McGlynn and Seibert 2003). Due to improvements in data acquisition, computing power and 

storage capacity, terrain data has become increasingly available at finer and finer resolutions and 

at broader scales, from NED and SRTM to lidar. With lidar, our ability to see features on the 

landscape is so improved that that we can investigate new properties of landforms remotely which 

results in better information for a diverse field of scientists and land managers.  

Over the past ten years, the application of lidar data to address basic research and land 

management questions has evolved from that of a user group consisting largely of the research 

community to a group inclusive of land managers and practitioners. Whether using coarser state-

wide data, such as Pennsylvania 1 m dataset (PAMAP) or 0.5 m research data, lidar data provide 

an unprecedented capability to model landscapes. However, resolution and accuracy differences 

result in differing capabilities to model landscape features, especially when coarser commercial 

grade lidar data (often > 3 m) is compared to research grade lidar (often < 3 m) typically used for 

site-specific, or small-watershed scale analysis. Research grade data are often collected at higher 

point density (which results in a more detailed model of landscape features) and potentially more 

accurate elevation dataset. Although lidar-derived DEMs have been shown to be extremely 

accurate when compared to non-lidar generated DEMs (Maune 2007), the accuracy of lidar-

derived DEMs for measuring micro-topography on landscapes is debated (Kraus and Pfeifer 

1998). For example, some researchers have found lidar-derived DEMs to be over-smoothed 
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(Kraus and Pfeifer 1998), which can minimize surface roughness and result in less topographic 

complexity. In contrast, others have found lidar-derived DEMs effective at identifying features 

such as landslides, which can have complex roughness patterns (McKean and Roering 2004). 

This question is confounded by abiotic terrain factors (such as slope) and biotic factors (such as 

evergreen vegetation and coarse woody debris) (Su and Bork 2006, Spaete et al. 2011). 

Micro-topography is an important variable for modeling water movement (Dunn et al. 

1991), geomorphology (Lavee et al. 1995), vegetation dynamics (Beatty 1984, Enoki 2003), and 

riparian communities (Naiman and Decamps 1997, Pollock et al. 1998). Presently, research on 

determining surface roughness has frequently focused on agricultural soils (Huang 1998, Govers 

et al. 2000, Kamphorst et al. 2000) or geologic features such as landslides and alluvial fan 

deposits (Glenn et al.2006, Frankel and Dolan 2007). Due to lidar’s capability to more accurately 

represent micro-topography and surface roughness (Glenn et al. 2006), lidar-related research 

applications will likely cross over to fields such as ecology, hydrology, soil science, and forest 

science. Lidar data and its associated topographic variables have the potential to improve 

estimates of water storage and infiltration, identify wildlife habitat and surface-dependent soil 

properties or relief. For example, pit-and-mound topography relief is a type of micro-topography 

very common in natural forested ecosystems, and that is commonly driven by historical incidents 

of wind throw (Schaetzl et al. 1988, Rumbaitis del Rio 2006). Pit and mound topography is 

known to occur more frequently in areas prone to shallow rooting such as landscapes with a 

shallow soil depth to a water table or other restricting layer. Pit and mound topography may also 

result from differences in tree species, ages of stand, and other vegetation-based variables. The 

application of lidar data in identification of such landscapes may result in identification of some 

of these features which could improve our understanding of co-occurring soil and vegetation at 

site-specific and regional scales.  
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Various methods have been proposed to measure micro-topography including analysis of 

micro-topography fractal dimensions, (Andrle and Abrahams 1989), identifying eigenvectors 

parallel to micro-surfaces (McKean and Roering), and analyzing variograms associated with 

surfaces at multiple scales (Bai et al. 2005, Huang and Bradford 1992). Other methods include 

measuring the standard deviation or range of elevation over a particular scale, and calculating 

variability over a small scale while removing the effect of the broader scale topography (Glenn et 

al.2006, Frankel and Dolan 2007). Unfortunately, a consistent, preferred method of delineating 

surface roughness has not emerged, potentially because a one-method fits all approach is unlikely 

given the diverse array of needs. Thus, one of the objectives of this research is to evaluate the 

different roughness metrics calculated from lidar-derived DEMs.   

The cost of obtaining lidar data can vary with scale, but whether a finer data resolution is 

always warranted is unknown. Besides differences in point cloud density across lidar data 

resolutions, there are also different methodologies and algorithms for generating a DEM from the 

lidar point cloud (Hengl and Evans 2009) which can inflate the cost. Introduced artifacts resulting 

in greater error during processing of the lidar-derived DEM may result in different roughness 

metrics at a variety of scales. While one method of generating a DEM from lidar data may work 

best for hydrologic modeling, another method may be more useful for assessing pit and mound 

topography. Additionally, cost may vary based on methodology.  

I evaluated two different lidar datasets for relative accuracy using a topo-survey as a 

control, and roughness metrics derived from multiple methodologies to assess the effectiveness of 

lidar at characterizing surface roughness and microtopography. In addition, the micro-topographic 

signatures of several landforms within the site are modeled. Surface roughness is modeled using a 

1 m DEM and field-surveyed features (at the scale of 10-100 cm): surface roughness and micro-

topography are used interchangeably.  
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Methods 

Study Area 

This study took place in a 119 ha watershed located in the Ridge and Valley Province of 

Pennsylvania (Figure 3-1) known as Leading Ridge Watershed One. The elevation of the 

watershed ranges from 260 m at the mouth of the watershed to 512 m at the top of its 

northwestern border. Since this watershed is in the Ridge and Valley Province, its hydrologic 

network tends to form a trellis pattern instead of the more common dendritic pattern typical of 

sandstone and shale bedrock. The geologic formation underlying the watersheds consists of 

deeply dipping strata ranging from resistant Tuscarora quartzite and sandstone at the top of the 

watershed to less resistant Rose Hill shale that comprises the valley area (Schultz 1999) (Figure 

3-2). This terrain is consistent with that which makes up most side slopes and ridges of the Ridge 

and Valley Province, which is generally characterized by canoe-shaped valleys and long, linear, 

parallel ridges formed by differential erosion (Schultz 1999). Ridges tend to be extremely steep 

and rocky and the topography is generally well-drained (Schultz 1999). This landscape has also 

been largely influenced by peri-glacial processes of the late-Pleisticene (Ciolkosz et al. 1986).  

Figure 3-1: Location of the study site in the Ridge and Valley province of Pennsylvania. 
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a)  

 
b) 

 

Figure 3-2 a) Schematic showing the approximate arrangement of geology in the Leading Ridge Watershed 

1 (Adapted from Shields 1966) and b) map of the watershed showing approximate locations of contacts 

(adapted from Shields 1966).  
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The watersheds contain a mature oak/hickory forest approximately 100 years of age. This 

area has been utilized extensively for charcoal production prior to 1900, and charcoal pits can still 

be found scattered throughout the site (Robinson 1959). The southern section of the watershed 

was probably grazed until the 1930s, when farmers were paid to abandon their land. A small 

salvage cut was conducted in 2006 due to a blowdown event that occurred on the site, and the 

watersheds experienced moderate gypsy moth mortality over the past 20 years (pers, com. Joseph 

Harding 2009).  

This site was chosen in part because of its history of being used as an experimental 

watershed and the vast dataset that currently exists for the site. The Leading Ridge watershed 

research areas were established in Penn State’s Stone Valley Experimental Forest of central 

Pennsylvania in 1959 as paired watersheds to study the hydrologic response of different forest 

practices (Lynch and Corbett 1990). This watershed is also within the larger Shaver’s Creek 

watershed which is being used as part of the Susquehanna/ Shale Hills Critical Zone Observatory 

(CZO), an interdisciplinary observatory toward quantitatively predicting creation, evolution, and 

structure of regolith as a function of the geochemical, hydrologic, biologic, and geomorphologic 

processes operating in a temperate, forested landscape (Brantley et al. 2007, Anderson et al. 

2008).  

The dominant parent materials across the watershed are sedimentary rocks formed during 

the Silurian period of 410-440 million years ago (Schultz 1999). Their structure is steeply dipping 

and outcrops are found in near vertical position (Shields 1966) (Figure 3-2). The three rock types 

that underlay over 90% of the watershed are the Tuscarora quartzite, Castanea sandstone, and 

Rose Hill shale. Keefer sandstone is also important because although thin, it supports the shale 

hill formation along the lower front of the watershed. The top of the watershed, which is found on 

the crest of Leading Ridge, is underlain by Tuscarora quartzite, a very resistant sandstone-

quartzite which is the dominant ridge forming rock in the Ridge and Valley Province of 
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Pennsylvania. Slightly downslope, the Castanea sandstone underlies the upper portion of the 

slope area in the watershed. This sandstone is slightly softer than the Tuscarora and is comprised 

primarily of greyish red sandstone and siltstone. The Rose Hill shale makes up the lower slope of 

the watershed, the valley bottom, and most of the shale hill area in the front of the watershed. The 

Rose Hill shale has thin limestone layers inter-bedded which contributes to the relatively higher 

pH of the shale hill areas when compared to adjacent forested ridge soils (Lehman 1966). Soils 

developed across the watershed tend to follow the trends of the topography and underlying 

lithology (Figure 3-3). An analysis of SSURGO (NRCS 2011) shows that the most common soil 

series in the upper half of the watershed are the Hazelton-Dekalb association (sandstone 

colluvian); Laidig (sandstone colluvium), which is found on the lower part of Leading Ridge; 

Buchanan (sandstone/shale colluvium), which is found in the valley bottom on the southwest 

portion of the watershed; Andover (sandstone/shale colluvium), which is found in the valley 

bottom on the southeast portion of the watershed; and Berks-Weikert association (shale residuum, 

local colluvium), which is found on the shale hills in the front of the watershed (NRCS 2011). 

  

Figure 3-3: SSURGO soil polygons for the Leading Ridge watershed.  
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DEM Data Sources 

There were two sources of lidar-derived DEM data utilized for this project. The first lidar 

data set was collected in 2007 during leaf-off conditions as part of the PAMAP lidar program. 

Post spacing for the lidar returns used to generate the 1 m DEM was 1.4 meters, with a target 

vertical RMSE of 18.5 cm in open areas and 37 cm in vegetated or forested areas. Points were 

first classified as either ground or non-ground points, with ground points being thinned down to 

create a TIN that fit the final specifications by an independent vendor, BAE Systems. Using 

proprietary methods, a 3.2 foot (about 1 m) resolution DEM was produced using the TIN. All 

finished products were checked for quality and accuracy (PAMAP LiDAR QAQC report 2007).  

The second data set, CZO lidar, was collected in the winter of 2010-2011 by the National 

Center for Airborne Laser Mapping (NCALM). Initial lidar point density was approximately 10 

points per m
2
,
 
with bare earth point spacing of approximately 4 points per m

2
. Bare earth points 

were isolated using Terrascan, and then converted to a DEM using Golden Software’s Surfer 8 

Kriging algorithm using a linear variogram model with a nugget variance of 0.15 m and a search 

radius of 25 m or 40 m. Complete specifications can be found in the 2010 NCALM project report 

(NCALM 2010). Final resolution for the DEM used for this study was 1 m.   

Modeling 

Surface roughness was assessed using five methods. The focal statistics tool in ArcGIS 

Spatial Analyst was used to calculate the standard deviation of elevation within a 5 m by 5 m 

moving window, which resulted in a first approximation of roughness. A 5 m by 5 m moving 

window was chosen because features defined as surface roughness for this study are on the order 

or 1-3 meters in size. Larger moving windows may have identified larger objects such as streams, 
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roads, trails, and major slope breaks which were not the subject of this study. Because of the high 

correlation between slope and standard deviation of elevation (Figure 3-4), this method was not 

further analyzed and additional metrics were calculated that attempted to remove the effect of 

slope on the calculation. Standard deviation of slope was calculated using focal statistics over a 5 

m by 5 m moving window of a slope layer measured in percent slope using ArcGIS. A 5 m by 5 

m window was again chosen in order to emphasize the scale of microtopography targeted for this 

analysis. Similarly, a second roughness metric was calculated using the standard deviation of 

curvature using a 5 m moving window. Curvature was calculated for the lidar-derived 1 m DEMs 

using the curvature tool in ArcGIS that measures a combination of both plan and profile curvature 

using the method of Zeverbergen and Thorne (1987). Calculating curvature at this scale is 

representing the micro-scale curvature of the surface, not dominant surface features that would be 

traditionally identified as curvature.    
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Figure 3-4: Slope (left) and the standard deviation of elevation (right) for the PaMAP lidar 1 m DEM. Note 

the similarities.  

 

A third method for measuring roughness was to isolate the micro-scale variation of the 

DEM from the broader scale topography of the site. This was done by generating a new, 

smoothed surface created by using a thin plated spline on a thinned 10 m DEM. First, the lidar-

derived 1 DEM was thinned to 10 m resolution using the nearest neighbor method in ArcGIS. 

Using ArcGIS to fit a regularized spline with a weight of 0 in ArcGIS, the 10 m DEM was 

interpolated back to a 1 m DEM. The difference between the lidar-derived 1 m DEM and the 

resampled/splined DEM was calculated to show localized differences from the broader scale 

topography.  

An additional metric of microtopography was the pit fill metric, which measured the 

difference between a hydrologically corrected (pits filled DEM) and the original DEM. In order 
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to calculate this layer, a filled DEM was created using the Fill tool in ArcGIS spatial analyst 

extension with the lidar-derived 1 m DEMs. The original DEM was then subtracted from the 

filled DEM, and values were summed over a 10 m area using the block statistics tool to improve 

visualization of data.  

Field Verification 

Roughness metrics were validated in the field with a total station used to survey transects 

and micro-plots throughout the watershed (Figure 3-5). This methodology was intended to be 

purposive and was not designed with concern for being replicable. In ArcGIS, four transects were 

located perpendicular to major breaks in soil as measured by SSURGO and landform type. Each 

transect was designed to be approximately 100 m in length, with one end being in one soil map 

unit and landform, and the other end in a different soil map unit and landform. Two of the 

transects were located at the boundary between Berks/Weikert and Buchanan soil, one transect 

was located at the boundary between Buchanan and Laidig, and one was located at the boundary 

between Laidig and Hazleton-Dekalb. These are the four dominant soil types found in the 

watershed. These proposed transects were located in the field to ensure that transects spanned soil 

types: 1 m soil cores were taken to verify transects spanned multiple series. Micro-plots 

representative of the soil type/landform they represented were identified in the field. Two micro-

plots were measured on each transect for a total of 8 micro-plots. Micro-plots were surveyed in 

order to create a TIN-based DEM at as high of a resolution as possible to compare to the DEMs. 

This was done in order to compare the DEM to a model of the ground surface as derived from a 

topographic survey.  
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Figure 3-5: Location of micro-plots and transects on the watershed.  

For each transect, elevations were measured at every slope break in order to record the 

surface in two dimensions. Transects were continued until it was clear that a boundary in soil or 

landform was reached based on field observations of soils, seeps, springs, and a change in 

understory vegetation, with at least 20 meters of the transect continuing into the second soil or 

landform. Micro-plots (10 m by 10 m squares) were placed in locations representative of the 

surface in the localized area and were selected to be within survey distance of the corresponding 

transects. On two of the micro-plots, the slope was estimated to be nearly 100% so in these areas, 

the side of the plot perpendicular to the slope was measured to be 14 meters ground distance in 

order to create a plot that was approximately 10 m by 10 m in planimetric view. Within these 

micro-plots, rocks were measured as surface if they were assessed to be embedded into the 

ground. If they were loose, they were not considered to be part of the surface. The average rock 
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size was approximately 0.3 m. A topographic survey was conducted on micro-plots to record all 

areas of slope change in order to record as accurate of a depiction of the surface as possible.  

In order to analyze field data, point elevations were converted to a triangular irregular 

network (TIN) using ArcGIS. A TIN model was chosen because points were located in the field 

to represent actual topography, with all changes in slope recorded. The TIN was converted to a 

raster based elevation model using a 0.3 m cell size to approximately match the scale of features 

that were captured in the survey. For each 0.3 m resolution plot the same roughness metrics were 

calculated that were used for the modeling analysis including standard deviation of slope and 

curvature, values of pitted cells, and difference between local elevation and a splined surface. It 

should be noted that since the methodology of the field survey set out to record actual 

topography, care was taken to record lowest and highest elevations over an area. This could be 

contrasted with a digital elevation model which is based on a regular gridded pattern. Therefore it 

would be expected that the ground surveyed plots display much greater roughness than the DEM 

plots. 

Root Mean Square Difference 

Root mean square difference (RMSD) between the DEM-modeled elevations and the 

surveyed elevations was calculated for the CZO lidar dataset and the PAMAP lidar dataset using 

the survey points as control points. There were over 700 points that were surveyed from 

benchmarks. These points are the same as those used in field verification. Each point was 

converted to a 0.3 m raster cell using the mean value of points to assign a raster value. RMSD of 

the lidar-derived DEMs was calculated using the formula RMSD = sqrt((1/N)*sum((x-x')^2) 

where N equals the number of cells/points, x is the surveyed value, and x' is the lidar DEM value.  
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Results 

Field-based Modeling 

Although the lidar-derived DEMs from the PAMAP program and the CZO lidar both are 

at a 1 m resolution, many differences exist between the two datasets based on their initial point 

density and subsequent processing techniques. The PAMAP lidar was converted to a DEM using 

a process based on creating a triangular irregular network (TIN) from points classified as ground 

points using a proprietary algorithm. This TIN was then converted to a DEM. Conversely, the 

CZO lidar was converted to a DEM using a kriging technique. Figure 3-6 presents shaded relief 

maps created from each datasets. The difference between the kriged and TIN-based DEMs is 

expressed in the faceted appearance of the shaded relief map of the PAMAP lidar dataset when 

compared to the CZO generated dataset.   

In order to test and compare the accuracy of the lidar datasets, RMSD was calculated 

using the field survey points as control points in the watershed. RMSD for the CZO lidar was 

slightly larger than the RMSD for the PAMAP lidar with a value of 0.417 m and 0.410 m 

respectively (Table 3-1). 
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Figure 3-6: Shaded relief maps generated from CZO lidar (left) and PAMAP lidar (right). The TIN-based 

algorithm was used for the PAMAP lidar and is visible in the shaded relief map.   
 

Table 3-1: RMSD for PAMAP and CZO lidar 

Lidar Data source CZO Lidar PAMAP Lidar 

RMSD 0.417 0.410 

 

Errors ranged within about 1.5 meters for both datasets (Table 3-2). Figure 3-7 shows an 

example of the error pattern for the PAMAP lidar dataset and CZO lidar dataset. Note the large 

differences found on the steep hillslope from both datasets. This was in an extremely steep area 

with slopes approaching 100%, which may account in part for the error. Also notice that the 
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region directly along the stream channel has a higher error rate for both DEM datasets. These are 

both areas where expected error rates would be high due to rapidly changing terrain. Although 

there were some differences between the PAMAP and CZO lidar, in general the errors from both 

datasets tended to follow the same patterns. The mean difference between surveyed and lidar-

derived DEM elevations was about -0.3 meters which means the surveyed elevations were on 

average about a third of a meter lower than the DEM elevations.   

 

Table 3-2: Difference between surveyed points and the CZO and PAMAP lidar datasets 

Lidar Dataset Min difference  Max difference  Mean Difference  SD  

CZO  -1.686 0.579 -0.311 0. 277 

PAMAP -1.473 0.595 -0.317 0.259 

 

Figure 3-7: Close up view of two plots and transect. Values represent the difference between surveyed 

elevations and lidar-derived elevations. Images are overlain over shaded relief maps of corresponding 

DEMs. Values in the key are in feet to match the original units of the DEMs.  
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Slope was calculated and compared for surveyed transects, PAMAP DEM, and CZO 

DEMs (Figure 3-8). Although there are some localized differences (over distances of 1-2 meters), 

the slopes were similar between data sets. As an example Figure 3-8 shows a close-up of slopes 

delineated using the PAMAP lidar, the CZO lidar, and the surveyed points of one transect that 

range in slope from 0-90%. Transects were placed perpendicular to the steepest slope so slopes 

calculated from surveyed points would approximately reflect the steepest slope measurements 

derived from the DEMs using the ArcGIS slope algorithm.  

 

Figure 3-8: Slope calculated along a transect located at the junction between the steep shale hill and the 

valley bottom. This is the transect on the southwest section of the watershed.  
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Roughness Modeling 

Due to differences in processing algorithms between the PAMAP and CZO lidar-derived 

DEMs, the algorithms used to calculate the roughness metrics generated roughness maps for each 

lidar product that appeared very different at a fine scale, although there were consistencies among 

methods on the broader scale. In Figure 3-9, the pit fill metric is shown for the PAMAP and CZO 

DEMs. Although the CZO lidar had much higher rates of closed depression occurrences than the 

PAMAP DEM, both datasets presented similar patterns, with higher values of depressions 

occurring on both tops of ridges and along valley bottoms. Many of these depressions tend to be 

located along stream areas in both datasets, and there seems to be a clear line across the middle of 

the slope where the prevalence of these depressions increases. There also appears to be a 

relationship between closed depressions and slope, with areas with higher slope having lower 

values of the pit fill metric. Unfortunately, the road across the middle of the watershed also 

produces many cells that show up as high values with this metric, making it difficult to accurately 

assess the natural roughness of the watershed.    
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Figure 3-9: Pit fill metric on 10 x 10 meter blocks from CZO lidar (left) and PAMAP lidar (right).  

The second roughness metric analyzed was standard deviation of curvature over a 5 

meter moving window (Figure 3-10). The results for this metric were very interesting because of 

the extremely distinctive pattern that emerged in the CZO lidar dataset. There was a very clear 

striping artifact pattern approximately aligned to the dominant slope. When the actual curvature 

values and shaded relief maps were analyzed at a fine scale, it became apparent that this striping 

was caused by the initial DEM processing, potentially by the kriging algorithm used to generate 

the DEM from the initial lidar points. Despite this striping, broad scale patterns in roughness 

values were visible from this layer. The PAMAP lidar did not display these striping artifacts and 

instead followed the broader roughness patterns of the CZO lidar. Areas of high standard 

deviation of curvature are found along steeper rocky slopes and along linear features such as 
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roads, stream channels, and slope breaks. Features perpendicular to the slope are prominent, 

particularly when compared to the standard deviation of slope layer that is shown in Figure 3-11.  

Figure 3-10: Standard deviation of curvature values for CZO lidar (left) and PAMAP lidar (right) 

Patterns in the standard deviation of slope (Figure 3-11) are similar to the patterns found 

in the standard deviation of curvature, with both methods producing very high values along linear 

features such as streams and roads. Standard deviation of curvature, however, tends to highlight 

features perpendicular to the dominant regional slope, while standard deviation of slope does not. 

Using the SD of slope metric, the top of Leading Ridge tends to have low values, while the 

steepest portion of Leading Ridge and the valley bottom both tend to have high values. 

Particularly in the CZO lidar, small features such as charcoal pits and springs seem to have high 

values as well.  
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Figure 3-11: Standard deviation of slope for CZO lidar (left) and PAMAP lidar (right) 

 

The last roughness metric was based on the degree that the local topography differed 

from the regional topography and was calculated by thinning the DEM and creating a splined 

surface, then subtracting the original from the splined surface and measuring the absolute value to 

remove negative numbers (Figure 3-12). Again, there were differences due to artifacts from 

algorithms from different interpolation techniques, particularly in the PAMAP lidar this time, but 

similar patterns were highlighted. High roughness values tended to correspond to areas of high 

slope. There was an area of low roughness along the top of Leading Ridge and in the mid-slope 

area.  
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Figure 3-12: Difference between splined surface and original DEM for CZO lidar (left) and PAMAP lidar 

(right).  

Relating surface roughness to soil, geology, and landforms 

There is a broad range of soil, geology, and topography within the Leading Ridge 

watersheds. Topographically the watersheds range from ridge-top settings with extensive 

exposures of quartzite and a dry oak heath forest type to a bottom land setting that is home to a 

rich, bottomland cove forest type (Hornbeck 1962). Since PAMAP and CZO lidar both exhibited 

similar patterns of roughness, only PAMAP lidar was used for the remainder of the analysis. 

Roughness metrics generated from the PAMAP lidar were analyzed by landform position to 

improve understanding of the surface expressions of particular soil types. Landform position was 
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chosen because it approximately represents both geology and soil, and soil boundaries are not 

available at a fine enough scale to differentiate the watershed.  

The different soils found in the watershed could be expected to have different surface 

characteristics that could be represented as microtopography. There are five major soil series 

and/or associations found in the watershed including Hazelton-Dekalb extremely stony sandy 

loam, Laidig extremely stony loam, Andover extremely stony loam, Buchanan extremely stony 

loam, and Berks-Weikert shaly silt loam. Hazelton Dekalb, Laidig, and Berks-Weikert are all 

well-drained soils, while Buchanan and Andover are somewhat poorly drained and poorly 

drained, respectively. Buchanan, Andover, and Laidig are all colluvial soils or residual soils 

formed from colluvial material (Lynch and Corbett 1990) and all generally contain a fragipan, a 

layer that restricts the flow of water and root penetration (NRCS 2011). Because of these 

properties, areas underlain by these soils tend to have numerous springs, stream channels, seep 

wetlands, and other hydrologic features that may be represented as a pitted, uneven surface. There 

were also records of windthrow events that have recently taken place in these areas (Joseph 

Harding, pers. com.). In addition to these micro-topographic features, there are many areas of the 

watershed with rocky, talus features close to the surface but since the rocks tend to be smaller 

than a meter, their surface texture did not emerge using roughness metrics.  

By visually analyzing the roughness maps together, it was possible to delineate features 

along lines of contrasting roughness patterns (Figure 3-13, Table 3-4a). For example, the top of 

the ridge was characterized by having relatively high values for pit fill metric, low values of 

standard deviation of slope, low values of standard deviation of curvature, and low values for the 

difference between splined surface and regular surface. The top of the slope exhibited an opposite 

pattern. The lower slope area was difficult to delineate, but was characterized by a very patchy 

pattern in all of the roughness metrics, along with a high value for the pit fill metric. The valley 

bottom contained the highest value for all of the roughness metrics, while the shale hill contained 
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relatively low roughness values for all of the metrics. This is probably due to the lack of 

sandstone fragments present and the lack of hydrologic features on the smaller landform which 

results in a smoother surface. The landforms form similar boundaries to the soils, although 

Andover and Buchanan soil types are combined to form the valley bottom as there was no clear 

difference between them expressed in the roughness metrics. Descriptive statistics were 

calculated for each roughness metric per delineated landform and means are shown in Table 3-4b. 

a) b) 

  
c) d) 

  
Figure 3-13: Roughness metrics shown with the boundaries delineated using patterns of roughness. 

Boundary delineation was complicated by the road running through the middle of the watershed, 

particularly the pit fill metric. 
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Table 3:4a Qualitative interpretive table used for visual interpretation  

Roughness metric Top of Ridge Top Slope Lower Slope Valley Bottom Shale Hill 

SD of curvature (1) Low High Medium High Low 

Pit fill metric (2) High Low Medium High Low 

SD of slope (3) Low High Medium High Low 

Spline (4) Low High Medium High Low 

 

 

Table 3:4b Mean values of roughness metrics by landform delineated by roughness metrics  

Roughness metric Top of Ridge Top Slope Lower Slope Valley Bottom Shale Hill 

SD of curvature (1) 2.27 3.10 2.50 3.19 2.23 

Pit fill metric (2) 0.08 0.01 0.03 0.30 0.02 

SD of slope (3) 2.49 3.49 2.91 4.00 2.85 

Spline (4) 0.21 0.29 0.29 0.49 0.26 

 

In order to assess the relationship between the PAMAP lidar-derived surface roughness 

and surveyed surface roughness, the same roughness metrics were calculated from the surveyed 

micro-plots. Point locations were converted to a TIN and from the TIN to a 0.3 meter DEM to 

create a raster-based modeled terrain of the site from a field survey. There were no plots placed 

on top of the ridge due to field limitations. The results of the micro-plot analysis (Table 3-5) are 

very different than the results from using the original lidar-derived DEM, particularly with regard 

to the shale hill plots. These were the roughest plots according to three of the metrics derived 

from surveyed data, although appearing relatively smooth according to the lidar-derived DEM. 

These plots were both placed in extremely steep settings which may have affected the resulting 

surveyed and modeled roughness metrics. 

Table 3-5 Mean values of roughness metrics calculated for each micro-plot.  

Roughness metric Upper Slope Lower Slope Valley Bottom Shale Hill 

SD of slope 1.31 2.15 2.29 4.72 

SD of curvature 5.43 6.51 8.33 11.97 

Spline 0.30 0.18 0.18 0.59 

Value of Pits 0 0.00031 0.0004 0 
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Discussion 

The PAMAP and CZO lidar-derived DEMs both have 1 m resolutions, and both have 

been shown to have similar RMSE, but they are still very different DEMs with contrasting 

surface characteristics. The PAMAP DEM has a much smoother appearance due to the reduced 

point density and the TIN-based interpolation method used to convert the elevation points to a 

DEM. The CZO lidar DEM has a fine-scale grainy appearance and appears to more accurately 

model the landscape due to the increased visibility of surface features and charcoal pits, although 

the results of the RMSD and transect slopes do not support that conclusion. Although the CZO 

lidar dataset is not more accurate than the less densely sampled PAMAP lidar (as measured by the 

RMSD), it displays topographic information and features such as trails, small channels, and 

charcoal pits much more clearly. This demonstrates that density and algorithm both have 

important impacts on DEM generation, and that different algorithms may be used on the same 

terrain depending on the objective. Also, density and algorithm may not be as important to 

depicting elevation as they may be for other purposes. In this case, there is no difference in file 

size between these two datasets because both lidar-derived DEMs have the same resolution. 

There was also no clear improvement in calculation of roughness metrics from the more densely 

sampled CZO lidar than from the PAMAP lidar. This may indicate that there is no clear 

advantage to research grade lidar for calculating roughness metrics unless accompanying 

resolution is also increased such as would be accomplished from a 0.5 m resolution DEM. Initial 

point density seemed less important than algorithm type used for both DEM generation and 

roughness calculation. Siska and Hung (2001) found that TIN-based DEM generation and kriging 

were two of the most accurate methods of generating DEMs as measured by RMSE. 

By analyzing patterns of the different roughness metrics as shown in Table 3-4a, we can 

start to understand what our different roughness metrics may be showing. Figure 3-14 shows 
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landforms with a graph of the various roughness values for each landform. For improved 

visualization, roughness metrics were converted to relative roughness indices by dividing each 

mean roughness by the highest mean roughness value for that metric. These values are shown in 

Figure 3-14. In Figure 3-14, you can see that the valley bottom has the highest roughness values 

for all four roughness metrics. The ridge top has relatively low roughness values except for the pit 

fill metric, which was high. Notice that the pit fill metric and the spline both show much rougher 

surfaces in the valley bottom than in other sites, while the SD of curvature and the SD of slope 

are more similar across formations. The top of slope area has higher relative roughness values for 

SD of slope and SD of curvature, while the bottom of slope and shale hills are fairly similar. The 

bottom of the slope still has a relatively high value for pit fill metric, and the shale hill has almost 

no filled pits.  
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Figure 3-14: Roughness landforms with bar graphs showing different roughness indices for each landform.  
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No one roughness metric stood out as being the most effective at modeling all surface 

roughness or micro-topography, however, using them in combination made landscape 

interpretation easier. There was wide variation in the results of different micro-topography 

algorithms as measured by high or low roughness values. There was also a wide variety of 

interactions between the DEM-generation algorithms and the various roughness algorithm used. 

Although the different methodologies created mixed effects, they all reflected and responded to 

similar features on the landscape.  

I found that surveyed elevations were approximately 0.3 meters less than the elevations 

measured by both lidar datasets, with largest differences being present in areas of high slope. This 

agrees with Spaete et al. (2010) who found highest lidar-derived DEM error rates in areas with 

high vegetation cover and higher slopes. Tenenbaum et al. (2006) also suggests that tree roots 

may affect DEM results due to the inability of the processing algorithms to differentiate between 

roots and he ground. This suggests that in forested settings, particularly densely forested settings 

such as eastern deciduous forests, there may be error in lidar-derived DEMs caused by vegetation 

in the understory, coarse woody debris and roots of trees, and leaf litter, even in leaf off 

conditions. In this study RMSD results were relatively consistent across the watershed, but this 

could vary in different vegetation or landform settings. More research should be conducted to 

explore whether this may be due to topography or vegetation.  

The top of the Leading Ridge displayed very high values in the roughness metric 

measuring the difference between the filled and original DEM. This may be in part because of 

either the rockiness of the terrain or the interaction between the lidar beam and the high density of 

ericaceous shrubs such as blueberry, huckleberry, and laurel. Even though the lidar was collected 

during leaf off conditions and blueberry and huckleberry are deciduous, the dense branching 

patterns of these shrubs could result in erroneous pits being represented on the landscape. Also, 

there are some evergreen shrubs including mountain laurel on the ridge top.  
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Soil type has been shown to be an important predictor of vegetation community 

composition and site quality on a particular site (Horsly et al. 2002, Bailey et al. 2004). 

Unfortunately, the accuracy of currently available spatial soil datasets is not intended to be 

utilized at a fine scale in forested settings. The USDA Soil Survey for the area of Leading Ridge 

was created at a scale of 1:24,000 (NRCS), thus the use of either lidar data set to compare to soils 

should also occur at this scale. I found differences in the boundaries of soil series and topographic 

formations when using lidar-derived DEMs which reflects the mapping scale differences between 

soil polygons as delineated from SSURGO data and roughness metrics. By incorporating 

roughness metrics into our analysis, we may be able to refine our soil mapping polygons. For 

example, the presence or absence of a fragipan could be expressed on the landscape as an 

increase in local features created from fluvial geomorphic processes such as intermittent 

channels, springs, and seeps (Ciolkosv et al. 1979). There could also be increased pit and mound 

topography caused by increased wind-throw due to more shallow rooting depth in these sites (also 

due to a fragipan). This could be one way to identify these features which can have important 

impacts on site activities such as road planning and building.   

 Pennsylvania’s landscapes have experienced substantial land use and topographic change 

since European settlement over 300 years ago. This is particularly true for Leading Ridge due to 

the long history of management and research in the watershed (Lynch and Corbet 1990). Many of 

these methods for delineating roughness are particularly effective at highlighting cultural features 

on the landscape such as roads, skid trails, and charcoal pits. This makes it challenging to 

delineate natural patterns of micro-topography due to the difficulty of removing these features 

prior to modeling.  Although creating challenges for utilizing lidar elevation data to delineate 

natural patterns, soils, and features, identifying these features could also be a potential use for 

lidar-derived roughness metrics.   
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It was interesting to note that despite correspondence among DEM roughness, the 

roughness calculated from surveyed plots did not correspond to the roughness derived from the 

DEMs. This may indicate that the scale of the lidar, although extremely fine, is still not sufficient 

for modeling surface micro-topography as would be represented using a topographic survey, or 

that the features represented from the topographic survey are not the same as those modeled from 

the DEMs. Features that are characterized as rough using these roughness metrics are larger 

features such as major slope breaks, stream channels, roads and trails, and other man-made 

features. Also, surveyed roughness values were generally higher than DEM modeled values 

which could be due to the fact that when surveying, the purpose of the survey was to maximize 

roughness by recording elevations at the extreme boundaries of features to record as accurate of a 

surface as possible. DEMs on the other hand, are simply capturing an elevation at a regular 

gridded location. Textural features such as rockiness are simply on too small of a scale to be 

detected and measured using a 1m DEM. Much of the modeled roughness on Leading Ridge 

seems to be from intermittent and ephemeral flow channels which are very dense in the lower 

portion of the watershed.   

Conclusions 

When compared to the surveyed data, CZO research grade lidar DEM and the PAMAP 

DEM had a RMSD of approximately 0.4 m, with surveyed elevations being on average 0.3 m 

lower than DEM-modeled elevations. This could be both because of the nature of the ground 

survey and because some points used in the generation of the DEM are actually vegetation points 

such as roots, the bottoms of tree boles, and dense leaf litter. There were also differences between 

roughness values between surveyed roughness values and roughness values generated from 

DEMs, not just in magnitude but in what types of features emerge as rough. This probably 
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indicates that roughness metrics generated from lidar are not the same as metrics assessed on a 

topographic survey.    

Different roughness metrics have been analyzed using the 1m resolution DEM. These 

include standard deviation of elevation, standard deviation of slope, total value of pitted cells, and 

total range of elevation over different areas. No one method stood out as the most effective, but 

all methods highlighted different types of roughness and features. When viewed simultaneously, 

classes of features or landtypes were visible and associated with landforms. By incorporating 

roughness metrics into analyses using soils and geology, it may be possible to improve 

delineation of soil types and mapping units or other topographic features important in vegetation 

or hydrologic modeling.  
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Chapter 4 

 

Using lidar to improve classification of forested geomorphic landforms in the 

Ridge and Valley Physiographic Province of Pennsylvania  

Abstract 

Technology is changing the way scientists see the landscape, with lidar data providing 

information never before available. Scientists in many fields are looking for concise, effective 

methods to predict vegetation by classifying landscapes based on digital elevation model-derived 

terrain metrics such as slope, aspect, curvature, and topographic indices. With newly available 

lidar-derived elevation data, the accuracy and resolution is greatly improved but scale is so 

dramatically different that new approaches should be used to classify topographic features. By 

identifying lidar-derived patterns of curvature, major gradients impacting vegetation in a 

catchment including water accumulation, soil characteristics and nutrient availability can be 

summarized into one parsimonious metric. We applied this approach in the Ridge and Valley 

region of central Pennsylvania, in the broader basin encompassing the Shale Hills Critical Zone 

Observatory. By classifying the watershed into four dominant recurring landforms using patterns 

of lidar-derived curvature data, dominant vegetation communities and forest structures were 

successfully predicted and confirmed using multivariate statistical methods. When applied to a 

broader area encompassing a forested region containing several repeating ridges, the same 

landforms were delineated and were shown to support corresponding forest community types.   
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Introduction 

Technology is changing the way scientists see the landscape, with new data providing 

accuracy never before available. Scientists in many fields have been looking for concise, effective 

methods to predict vegetation by classifying landscapes based on digital elevation model (DEM) 

derived terrain metrics such as slope, aspect, curvature and topographic indices (Dikau 1989, 

Moore et al. 1993, ECOMAP 1993, Cleland et al. 1997, Franklin 1995, Myers et al. 2000). 

Understanding landscapes and their interactions is integral to ecosystem management due to the 

coupled relationship between terrain and vegetation (Devlin et al. 2001.) Landscape classification 

can also inform managers in their goals of identifying rare or sensitive ecosystems or maintaining 

a mosaic of habitat types (Zenner et al. 2010).  With recently available lidar-derived elevation 

data, the accuracy and resolution of terrain data is greatly improved but scale is much different, 

meaning new approaches could be utilized to classify topographic features.  

Foresters and ecologists have long identified fundamental relationships between terrain 

and vegetation (Bowersox and Ward 1972, Pfister et al. 1977, Franklin 1995, Noss 1987). Terrain 

impacts physical factors such as temperature, water availability, nutrient availability, and light 

availability. Particularly in mountainous regions, plant communities exhibit predictable 

transitions as elevation or aspect change. In eastern forested ecosystems however, the relationship 

between elevation and vegetation communities is not so straight forward. Since multiple terrain 

variables are intrinsically linked and can often affect many physical factors simultaneously, it is 

often difficult to tease out the contributing effects of multiple variables. Bolstad et al. (1998) 

found no strong relationships between vegetation and slope or aspect at Coweeta Hydrologic Lab 

in the Southern Appalachians. Soil data, which has been used effectively for many classification 

systems is not described in detail for forested mountainous areas in Pennsylvania due to lack of 

an extensive agricultural land use history in many of these areas (Carter and Ciolkosv 1991, 
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Devlin et al. 2001). With improved elevation data, we may be able to improve our classification 

systems by identifying patterns of landforms that are influencing vegetation.  

 In order to effectively engage in ecosystem management, forest managers need 

classification systems that are detailed enough to include changes in forest community, structure, 

and successional trajectory (Zenner et al. 2010). In Pennsylvania, these detailed classification 

systems do not currently exist. The Pennsylvania Department of Natural Resources (DCNR) 

Bureau of Forestry manages substantial amounts of land in Pennsylvania and has adopted a 

landscape classification system based on the National Hierarchy of Ecological Units (ECOMAP 

1993) and landscape units defined by Pennsylvania DCNR’s Bureau of Topographic and 

Geologic Survey Landform Mapping project (Sevon 1998). These efforts focused on identifying 

landtype associations (LTAs) and ecological landtypes (ELTs). An ecological landtype is defined 

(ECOMAP 1993) as a ―continuous sector of terrain that exhibits a relatively uniform influence on 

the landscape context‖ with landtype associations being composed of a combination of 

complementary ELTs that are spatially adjacent. Allegheny National Forest, the only national 

forest in Pennsylvania, defined LTAs based on general topography, geomorphic processes, 

surficial geology, soil families, potential natural communities, and local climates (Moriarity 

1996). Their LTAs range in size from over 1000 ha to over 30,000 ha in size. The 207,603 ha 

comprising the Allegheny National Forest have been delineated into 160 ELTs (Moore et al. 

2006). 

Kong (2006) delineated LTAs and ELTs for the entire state of Pennsylvania based on a 

hierarchical methodology of topographic delineation that started with a system of cuplands and 

caplands established by Myers (2000). Cuplands are areas where the dominant processes shaping 

the landscape are deposition of water and sediments, where caplands are landscapes dominated by 

rapid runoff and erosion (Kong 2006). Regions were further subdivided using a top-down 

approach predominantly using a statewide 90 m DEM that resulted in over 10,000 separate LTAs 
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that ranged in size from 40 to 2,000 ha. ELTs were delineated on a statewide basis based on 

topographic and soil data. With the improvement of elevation data now available, we may be able 

to improve our fine scale landform delineation based on topographic data. The scale chosen for 

this new landform classification is finer than that of landtype association (LTA) with most 

landforms delineated within this context fitting within one or two LTAs. For the purpose of this 

research, we were interested in identifying landforms in the Ridge and Valley province of a scale 

that resulted in changes in vegetation community or resulted in a distinct change in forest 

structure. 

Recently, advances in computing and GIS have led to multiple classification systems that 

use automated methodology to assign classes. The first group uses automated DEM analysis to 

create classes based on terrain features using moving windows (Dikau et al. 1989). A second 

landform delineation method is derived from multivariate classification systems based on 

combinations of terrain variables, or supervised classification where an expert assigns classes 

(Niemann and Howes 1991). More recently, automated classification methods using fuzzy 

hierarchical clustering algorithms have been used (MacMillan et al. 2000, Schmitt and Hewitt 

2004). These systems can be very effective at modeling mountainous terrain where major 

gradients in water, temperature, and nutrient availability exist, as well as in some areas of 

relatively flat terrain where elevation gradients coincide with soil differences or glacial features.  

In forested ecosystems of eastern Pennsylvania however, where water is abundant and elevation 

differences across major landforms are usually not greater than 300 m, topographic causes of 

vegetation community variability are more difficult to classify than simply a combination of 

elevation and aspect. Also, landform scale and position are difficult to incorporate into automated 

algorithms (Schmidt and Hewitt 2004). Perhaps most importantly, expert knowledge is not 

considered in order to limit user bias and unpredictable replication (Kong 2006). For these 

reasons, an automated methodology was not used for this study.  
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 In the Ridge and Valley Province, geomorphology is dominated by unique patterns and 

processes. Differential erosion augments fluvial geomorphology processes to create a terrain with 

strong gradients of vegetation structure and community along subtle changes in slope and 

landform position. The trellis drainage patterns of the province coincide with small parallel 

drainage networks that are driven by patterns in geology and folding. Rock formations are often 

on end with steep dips, particularly in ridge areas (Shultz 1999). These patterns are particularly 

difficult to capture through automated methodology because common topographic variables such 

as slope, elevation, and aspect may not have a noticeable effect on vegetation due to the 

overriding influence of underlying geology and soil. Almost all remaining landscape scale 

forested areas in the Ridge and Valley Province are found on ridges, so if forest classification is 

the goal, techniques must be developed to differentiate landforms that make up the larger, more 

dominant ridges. Since topographic structures are driven by changes in parent material, effects of 

terrain can be compounded by different soils and corresponding mineral contents (Ciolkosv et al. 

1990). The dominant ridge and valley forming rock formations tend to occur repeatedly in the 

same order, therefore classification schemes developed in one region should repeat throughout 

the region. The study watershed displays a very classic pattern of a major ridge underlain by 

resistant sandstone with a minor ridge of less resistant shale in the foreground.  

With the improvements in elevation data now available, we chose to use curvature and 

patterns of curvature to differentiate landforms. Curvature describes the rate of change of slope 

both down a hillslope perpendicular to contour lines (profile curvature) and along contour lines 

(plan curvature), with both curvatures relating to movement of water and other materials along a 

slope (Moore et al. 1993, McKenzie and Austin 1993). Curvature has been effectively utilized in 

geomorphometry and terrain analysis for many years (Wilson and Gallant 2000, Olaya 2009). 

Pennock et al. (1987) described a classification system based on curvature and slope used to 

relate soil properties to terrain. Convex areas tend to be divergent with water, nutrients, and soil 
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being removed from the area, while concave areas tend to be convergent areas. Since these 

processes are interdependent, by measuring curvature we can take advantage of one parsimonious 

metric that correlates with the movement of water and other materials that may affect vegetation 

(Moore et al. 1991). Gessler et al. (1995) found that upslope mean curvature modeled soil 

properties more effectively than other terrain metrics. The artifact contour errors in previously 

available DEMs made classifying patterns of curvature on a fine scale problematic, but by using 

new lidar-derived digital elevation data, curvature can be expressed much more accurately. We 

classified the ridge terrains into four recurring landform classes based on patterns of curvature.  

A vegetation community based analysis was conducted to explore the relationship 

between landform and vegetation. Pennsylvania forests have been classified into vegetation 

communities (Fike 1999) in collaboration with the Pennsylvania DCNR Bureau of Forestry, 

Western Pennsylvania Conservancy, and the Nature Conservancy. Fike identified and described 

23 terrestrial and 9 palustrine community types in Pennsylvania. Vegetation communities were 

used in collaboration with measured vegetation structure metrics to evaluate the idea that 

delineated landforms can inform vegetation patterns. Objectives of the study included classifying 

the landscape into repeating landforms that correspond to vegetation patterns and expanding that 

classification to include a landscape scale area of a forested region in the Ridge and Valley 

Province in Pennsylvania.  
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Methods 

Study Area 

This study took place in two regions exhibiting similar topography approximately 30 km 

apart. The first study area, Leading Ridge Watershed One, is a southwest to northeast trending 

119 ha watershed located in the Ridge and Valley Province of central Pennsylvania (Figure 4-1). 

The elevation of Leading Ridge Watershed One ranges from 260 m at the mouth of the watershed 

to 512 m at the top of Leading Ridge, which forms the north western border of the watershed. The 

hydrologic network of the watershed tends to form a trellis pattern. The geologic formation 

underlying the watersheds consists of deeply dipping strata ranging from resistant Tuscarora 

quartzite and sandstone at the top of the watershed to less resistant Rose Hill shale that comprises 

the valley area (Lehman 1962) (Figure 4-2). This terrain is consistent with that which makes up 

most of the Ridge and Valley Province, which is generally characterized by canoe-shaped valleys 

and long, linear, parallel ridges formed by differential erosion (Schultz 1999). Valleys tend to be 

underlain by limestone, dolomite, and shale, while ridges are formed by resistant sandstone and 

quartzite. Ridges tend to be extremely steep and rocky and the topography is generally well-

drained.  

 

Figure 4-1: Approximate location of the Leading Ridge Study area in the Ridge and Valley Province in 

Pennsylvania. 
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Figure 4-2: Geology of the Leading Ridge watershed One (adapted from Shields 1966) 

The watersheds contain a mature oak/hickory forest approximately 100 years of age. This 

area has been utilized extensively for charcoal production prior to 1900, and charcoal pits can still 

be found scattered throughout the site (Robinson 1959). The southern section of the watershed 

was probably grazed until the 1930s, when farmers were paid to vacate their land. A small 

salvage cut was conducted in 2006 due to a blow-down event that occurred on the site, and the 

watersheds experienced substantial gypsy moth mortality over the past 20 years (pers. com. 

Joseph Harding 2009).  

This site was chosen in part because of the long rich history of being used as an 

experimental watershed and the vast hydrologic and other datasets that currently exist for the site. 

The Leading Ridge watershed research areas were established in Penn State’s Stone Valley 

Experimental Forest of Central Pennsylvania in 1959 as paired watersheds to study the 

hydrologic response of different forest practices (Lynch and Corbett 1990). This watershed is also 

within the Shaver’s Creek watershed which is being used as part of the Susquehanna/ Shale Hills 
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Critical Zone Observatory (CZO), an interdisciplinary observatory toward quantitatively 

predicting creation, evolution, and structure of regolith as a function of the geochemical, 

hydrologic, biologic, and geomorphologic processes operating in a temperate forested landscape 

(Anderson et al. 2008). The Susquehanna/Shale Hills CZO is one of six watershed-scale 

observatories supported by the National CZO project.   

The second study area is located in the Seven Mountains region of Rothrock State Forest, 

encompassing about 2600 ha. Rothrock State Forest covers an area dominated by rugged ridges in 

the Ridge and Valley region of central Pennsylvania. This area was chosen to apply the results of 

the Leading Ridge case study to a broader scale region of the Ridge and Valley Province.   

Lidar DEM Data Sources 

Lidar data was collected as part of the PAMAP lidar program in 2007 during leaf-off 

conditions. Post spacing for the lidar returns used to generated the 1 m DEM was 1.4 meters, and 

the resulting DEM had a target vertical RMSE of 18.5 cm in open areas and 37 cm in vegetated or 

forested areas. Points were first classified as either ground or non-ground points, with ground 

points being thinned down to create a TIN that fit the final specifications by an independent 

vendor, BAE Systems. Using proprietary methods, a 3.2 foot resolution DEM was produced 

using the TIN, along with 2 ft contour lines and break lines. All finished products were checked 

for quality and accuracy (PAMAP LiDAR QAQC report 2007).  For most modeling, the 1 m 

DEM was thinned using the nearest neighbor method in ArcGIS 9.3 to produce a 10 m resolution 

DEM.  

Several studies have shown that 10 m resolution data is the appropriate resolution for 

studying landforms (Kienzle 2004, Zhang and Montgomery 1994). It is important to note the 

difference between traditionally available photogrammetrically-derived elevation datasets that 
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have been used for the majority of previously available research and newer lidar-derived datasets. 

Commonly used photogrammetrically derived datasets such as the National Elevation Dataset 

(NED) have been shown to have vertical RMSE on the order of 3 -10 m (Maune 2007), while 

even relatively low density lidar such as that which is available statewide in Pennsylvania has a 

reported RMSE of about 30 cm, even in forested settings. The difference is apparent when one 

views shaded relief maps of Leading Ridge with a 10 m NED dataset and a 10 m lidar-derived 

dataset (Figure 4-3). In particular, in the NED shaded relief map artifact contour errors are visible 

on the ridge top and dominant structures on the hillslope are not shown. These errors can have 

strong effects on derived curvature and patterns of curvature across landforms.  

a) b) 

  

Figure 4-3: Difference between a) photogrammetrically derived 10m hillshade and the 10m lidar-derived 

hillshade. Note the contour errors on top of the major ridge, along with lack of detail on the lower slope 

area.  
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Curvature Modeling 

In order to delineate dominant landform features, curvatures were calculated for a 

resampled 10 m lidar-derived DEM. Plan and profile curvature were calculated using the 

curvature tool in ArcGIS 9.3 (Zeverbergen and Thorne 1987). These curvatures were smoothed 

using a 3 x 3 mean moving window to improve visual interpretation of dominant features. Both 

smoothed plan and profile curvatures were reclassified using the quantile method into three equal 

classes of curvature: concave, straight, and convex. Reclassified plan and profile curvatures were 

combined to create nine curvature classes based on unique combinations of plan and profile 

curvature (concave/concave, concave/convex, etc.). Using maps of curvature classes, distinctive 

landforms were delineated that captured repeating patterns of curvature. Four features were 

identified and named, including rounded ridges, scalloped slopes, rock ridgelets, and hidden 

hollows, all of which display a characteristic pattern of curvatures.  

 Rounded ridge—broad profile curvature is convex or straight, undulating plan curvature, 

underlain by sandstone. 

 Rock ridgelet—narrow, steep small ridge convex in both profile and plan curvature. 

Underlain by shale, soils primarily Berks-Weikert association. 

 Hidden hollow—small hollow formations distinguished by being concave in both plan 

and profile curvature. Usually found between rounded ridges, or between rounded ridges 

and rock ridgelets. Often underlain by shale and Buchanan and Andover soils.  

 Scalloped slope—side slopes of rounded ridges displaying undulating pattern of 

curvatures. Lacking clear divergent or convergent flow features. 

These features were identified using the following methodology: the first features 

identified on a landscape were the rock ridgelets, the small convex features formed from shale. In 

order to delineate these features from the rest of the landscape, patches of convex/convex 
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curvature were identified that formed contiguous areas of at least 2 hectares that were more 

rounded than linear in nature. There may be isolated patches of other curvature patterns within 

these features, but the boundaries should be drawn along the first patch of concave/concave 

curvature that is reached. Each patch of rock ridgelet should be between 2 and 5 hectares and 

each patch should be surrounded by concave/concave curvature.  

After rock ridgelets were delineated, hidden hollows were identified by isolating the 

linear concave/concave areas that make up headwater stream networks. These formations are 

narrow, long, linear connected features approximately 50 meters across, and they are composed 

almost entirely of concave/concave curvatures. These features are adjacent to either scalloped 

slopes or rock ridgelet, depending on the curvature patterns of the adjacent formation.  

Scalloped slopes can be delineated based on their evenly distributed heterogeneity. All 

nine curvature classes are found at almost equal ratios. The lower slope end can be delineated 

when the curvature class becomes concave/concave over a continuous or near continuous area. 

The upslope of the scalloped slope can be delineated when concave/concave patches of curvature 

cease being found and over 95% of the area is covered by convex or straight plan curvature. It 

may be easier to delineate the scalloped slopes by identifying rounded ridges by their convex and 

straight plan curvature and putting in a boundary where the first patch of concave/concave 

curvature appears.  

Rounded Ridges can be separated from scalloped slopes due to the lack of 

concave/concave curvature class. There may be isolated disconnected patches, but they are not 

found regularly as they are on the scalloped slope. There is generally a distinctive patch on the 

slope where concave/concave pockets begin forming which distinguish the top of the scalloped 

slope. Figure 4-4 shows a zoomed in area of Leading Ridge Watershed One to demonstrate the 

methodology.  
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Figure 4-4: Leading Ridge One with curvatures and landforms delineated to demonstrate the methodology 

for landform delineation.  

Vegetation Surveys 

Vegetation was surveyed during summer of 2010 at the Leading Ridge watershed one. 

Thirty-two 15 m radius circular plots were surveyed. In order to locate plots on the watershed that 

represented the range of variability in forests types, four transects were placed across the 

watersheds perpendicular to the topography, geology, and soil layers using GIS. The terrain was 

classified into four topographic formations based on patterns of curvature. Two plots were placed 

along the transect in each of the formations using GIS so that they were at least 30 meters apart to 

ensure that plots did not overlap. Two plots were placed in each of four topographic formations 
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for a total of 8 plots on each transect and 32 plots total. Plots were located in the field using a 

Garmin GPSmap 60Cx GPS unit, and center points of plots were located at the nearest tree to the 

GPS plot location.  

In each plot, the following data were recorded:  

1. Geographic coordinate of the plot center. Plot centers were typically a tree that was 

flagged for easy visibility for return visits. 

2. Species name.The genus and species of each of the trees equal to or more than 18cm 

DBH were recorded.  

3. Tree height. The ―height routine‖ on a laser rangefinder (TruPulse 360 B, Laser 

Technology Inc.) was used for this data collection. The final tree height is the 

average of 3 data points collected.  

4. Number of trees in each plot. 

5. Diameter at breast height (DBH). The DBH of all trees over 18 cm (and 

corresponding species and height) were recorded.  

6. Crown Class. The following categories were used: 

D Dominant: Trees with crowns extending above the general level of the crown 

cover and receiving full light from above and partly from the side. 

CD Co-dominant: Trees with crowns forming the general level of the crown 

cover and receiving full light from above, but comparatively little from the sides. 

I Intermediate: Trees shorter than those in the two classes above but with crowns 

either below or extending into the above crown cover receiving little direct light 

from above and none from the sides. 

S Suppressed: Trees with crowns entirely below the general level of the crown 

cover, receiving no direct light either from above or from the sides.  
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7. Leaf Area Index (LAI) Leaf area index (LAI). A LI-COR 2200 Leaf Area Meter was 

used with the 45 degree angle lens cap for all of the plots. Each leaf area index 

measurement is an average of measurements taken in the 4 cardinal directions; the 

value for each plot is an average of 6 different sites in each plot. The 6 different sites 

were measured at the following locations – the individual measuring LAI paced out 

these locations in each of the plots: 

a. 5 m East of plot center 

b. 5 m West of plot center 

c. 12.5 m NE of plot center 

d. 12.5 m SE of plot center 

e. 12.5 m SW of plot center 

f. 12.5 m NW of plot center 

In addition to these forest species and structure metrics, a list of understory and 

herbaceous species mentioned in Fike’s (1999) vegetation communities most likely to be found in 

Leading Ridge was created and presence/absence data was recorded for each species in each plot.  

Raw Lidar Analysis 

Using Fusion 2.90 (McGaughey), a canopy model of the forest was created by identifying 

the highest elevation from the raw lidar .las file within 3 meters of each cell and using that data to 

create a canopy surface. The bare earth DEM was subtracted from this layer to create a tree height 

index. In order to remove the gaps that were found in the canopy model due to the low-density 

leaf-off lidar product, a 3 x 3 circular moving window was moved over the surface to record the 

maximum height in each window with resulting modeled canopies from each high point 

approximately 5 m in diameter. This height index model was compared to actual field height 
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measurements of dominant and sub-dominant trees to relate the field measured heights to the lidar 

based height index.  

Statistical Analysis 

Vegetation metrics analyzed include total basal area, basal area of chestnut oak (Quercus 

montana), total number of trees per plot, total number of species present per plot, average height 

of dominant and co-dominant trees, and average leaf area index (LAI). In order to explore the 

spatial relationships between vegetation and landforms, maps were generated showing graduated 

values of each of these metrics across the watershed.  

To test the hypothesis that vegetation communities on different landforms are 

significantly more different from one another than within landform variation, PC-ORD (McCune 

and Medford 2006) was used to explore the species datasets. A matrix containing presence/ 

absence for all tree species and selected herbaceous and understory species was used as the main 

matrix. A secondary matrix was created that listed on which landform each plot was located. 

Multi-Response Permutation Procedure (MRPP) which is a non-metric hypothesis testing 

procedure was used to test the significance of observed groupings of sample units (McCune and 

Medford 2006). MRPP uses a randomization permutation test to measure the within-group 

distance of sample units and compares that to randomly simulated groups of sample units to 

determine the significance of data groups being more similar than random groups (Peck 2010). 

Non-metric multi-dimensional (NMS) scaling was used to ordinate the communities and explore 

the gradients that may be affecting community composition (McCune and Medford 2006). A 

NMS stress test was run to determine that three axes should be interpreted. This ordination 

technique was chosen because the species dataset was not normally distributed.  
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An additional forest structure matrix was created that contained total basal area, basal 

area of chestnut oak (Quercus montana), total number of trees per plot, average height of 

dominant and co-dominant trees, total number of species, and average LAI for each plot. Since 

these data were all normally distributed, they were analyzed using principal components analysis 

in PC-ORD with a correlation matrix used as the cross produce matrix and assessed using MRPP 

to test the hypothesis that there is a significantly greater difference between landforms than within 

landforms.   

Model Evaluation-Rothrock State Forest 

An area of Rothrock State Forest approximately 2600 ha was used to assess the results of 

the curvature pattern modeling on a larger, landscape scale region. Curvature modeling was 

conducted on the thinned lidar-derived DEM using the same methodology as on Leading Ridge 

watershed one and the landscape was classified into rounded ridges, scalloped slopes, hidden 

hollows, and rock ridgelets using resulting patterns of curvature and previously described 

methodology. Sixteen plots were purposely located in areas easily accessible to roads and on 

public land to conduct vegetation surveys to classify the vegetation community present at each 

site. Four plots were located in each of the four formations. At each site, a 15 m radius plot was 

located approximately 50 m from the road. All trees were counted and identified by species and 

all understory species in Fike’s classification present were recorded. Each plot was assigned a 

vegetation community classification based on Fike (1999).  
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Results  

Landform Classification and Description 

 Patterns of curvature were used to delineate landforms because there is a curvature effect 

for many of the physiographic factors affecting plants including soil properties and moisture 

availability. The Ridge and Valley Province of Pennsylvania is distinguished by its regular 

repeating pattern of parallel ridges. Most of the ridges are of similar form, consisting of shorter, 

leading ridges paralleling the main ridge. It is important to note that for the purpose of this study, 

landforms are not defined based on curvature, but patterns of curvature. For example, features are 

not defined by belonging to one of the nine curvature classes, but on the different types of 

curvature classes that occur in each landform and the relationship with these classes with one 

another. Also, features were delineated in an interpretive manner following the methodology 

highlighted in the methods section by a trained interpreter. For example, the scalloped slope can 

be identified from the rounded ridge as one moves down the slope at the point where the profile 

curvature first becomes concave. Therefore, the rounded ridge can be described as having a 

convex or straight profile curvature and an undulating plan curvature. Scalloped slopes, in 

contrast, have all nine curvature classes occurring in roughly equal proportions. The features 

defined by the nine curvature classes are not formations, but merely the building blocks that make 

up the formations. When curvature classes were defined and analyzed four distinctive patterns of 

curvature emerged (Figure 4-5).  
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a.  b.  

  

Figure 4-5: (a) Landscape classification units with curvature classes and (b) a hillshade of the watershed 

showing the approximate terrain.  

 

 Rounded ridge—broad profile curvature is primarily convex, undulating plan 

curvature, underlain by resistant Tuscarora sandstone or quartzite. These features 

make up most of the ridge tops in the physiographic province. Depending on the 

underlying geology, these ridges may be more narrow or broad, but they all show 

a characteristic pattern of broadly convex plan curvature with a mix of planar, 

concave, and convex profile curvatures as one moves along the crest. There are 

pockets of concave profile curvatures that tend to form low points or saddles 

along the ridge, but these are isolated and narrow and tend to cut across the 

whole feature in a sharp, knife-like pattern. Soils tend to be Hazelton or Dekalb.  

 Rock ridgelet—These features can be identified on the landscape because they 

are convex in both plan and profile curvature. They tend to be much shorter and 
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narrower than rounded ridges. They are often underlain by softer sandstone or 

shale and can be very steep. Rock ridgelets underlain by shale such as those 

found in Leading Ridge have extremely shallow soils, with rock exposed in many 

places. They are often underlain by Berks or Berks-Weikert soils.  

 Hidden hollow—small to medium sized drainage features distinguished by being 

concave in both plan and profile curvature. These are not the broad open valleys 

generally used for agricultural purposes in the Ridge and Valley, but the small 

forested hollows that usually contain headwaters streams. These differ from the 

traditional hollows of other physiographic regions in that they are often found 

between ridges, or between main rounded ridges and rock ridgelets. They are not 

cove shaped, but more linear. These formations are often transition zones in soils 

and geology, often being formed from softer shales. Hidden hollows often 

emerge through water gaps. Soils are often Buchanan or Andover.  

 Scalloped slope—These features are defined by their undulating pattern of plan 

and profile curvature. All nine curvature classes can be found in this unit at 

roughly equal proportions. Areas of convex and concave plan curvature are often 

driven by small drainage systems affecting areas on a scale of several meters, 

while convex and concave profile curvature are formed by small slump-like 

features that are often found throughout the landscape, particularly on south 

facing slopes. The vegetation communities in these features tend to be very 

heterogeneous due to the pattern of curvature, with mixed oak and more mesic 

species. Soils tend to be Hazelton, Laidig, Dekalb, and are underlain by bedrock 

consisting primarily of sandstone and shale. The point on the bottom of the 

hillslope where scalloped slopes begin can be identified by the location where 
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profile curvature first becomes convex and on the top of the slope by the point 

where profile curvature first becomes concave from the top of the rounded ridge.   

Vegetation 

Chestnut oak (Quercus montana) was the most dominant tree in the watershed in both 

tree density and basal area, followed by northern red oak (Q. rubra), white oak (Q. alba) and red 

maple (Acer rubrum). Other trees occurring in the watershed include eastern hemlock (Tsuga 

candedensis), eastern white pine, (Pinus strobus) and black oak (Q. veluntina) (Table 4-1). 

Height of dominant and co-dominant trees varied throughout the watershed, even among trees of 

the same species. The average dominant and co-dominant tree height for each plot ranges from 

15.42 m to 30.4 m. Tallest trees are found in the lower 2/3 of the watershed, while shortest trees 

are found on top of both Leading Ridge and the rock ridgelet (Figure 4-6).  

 

Table 4-1: Most common trees on the watershed by number of trees 

Species Number of Trees 

on watershed 

Average 

DBH (cm) 

Density 

(trees/ha) 

Total BA on watershed 

(m
2
) 

Quercus montana 177 32.45 64.21 2591.36 

Quercus rubra 108 39.58 39.18 1435.41 

Quercus alba 54 40.52 19.59 376.07 

Acer rubum 52 26.46 18.86 148.7 

Tsuga canadensis 47 33.32 17.05 192.56 

Quercus veluntina 45 44.26 16.32 311.53 

Pinus strobus 31 33.95 11.25 87 

Betula lenta 22 26.52 7.98 26.73 

Nyssa sylvatica 20 22.37 7.25 15.72 
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Figure 4-6: Average height of dominant and co-dominant trees in Leading Ridge 1 

 

Basal area (m
2
/ha) ranges throughout the watershed from 10.3 to 49.7 (Figure 4-7). Like 

tree height, basal area was higher closer to the bottom of the watershed, but there are some plots 

with a high basal area at higher elevation. Some plots on the rock ridgelet also have a relatively 

high basal area. The patterns of basal area of chestnut oak (Figure 4-7) are opposite from the 

patterns of total basal area, with high values located on top of both the rounded ridge and the rock 

ridgelet and smaller values in the hidden hollow. There were only four plots that did not contain 

chestnut oak, all of which were located in the hidden hollow.  
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a) b) 

  
Figure 4-7: Total basal area and Quercus montana basal area in Leading Ridge One 

In addition to tree measurements, common herbaceous and understory vegetation were 

sampled for presence/absence. This was not a comprehensive survey, but included all understory 

species mentioned in Fike’s Terrestrial and Palustrine Plant Communities of Pennsylvania for 

forest communities likely to be found in the Ridge and Valley Province. The sites with the 

highest diversity were found on the rock ridgelet in front of the watershed, with up to 18 species 

identified in one plot (Figure 4-8). The fewest number of species identified in a plot was 6. 

Scalloped slope and rounded ridge plots tended to contain the fewest total number of species. 

Plots on top of the rounded ridge, in particular, contained a dense covering of blueberry 

(vaccinium spp.) which could have inhibited establishment of other herbaceous and understory 

plants. Total number of trees per plot (density) is also shown in Figure 4-8.  
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a) b) 

  
Figure 4-8: Total number of trees per plot and total number of species at each plot for Leading Ridge One 

Leaf area index (LAI) is a metric of the upper leaf surface area of vegetation divided by 

the total area of land. Plots on the rounded ridge had lower LAI values than other plots (Figure 4-

9), but otherwise there was heterogeneity in LAI values throughout the watershed. High values 

were clustered along the southwestern region of the watershed, with high values being found both 

on the rock ridgelet and the hidden hollow, even though tree heights were lower and site index is 

generally lower on the ridgelet. This may be because although trees do not grow as tall on this 

formation, they exhibit a stronger horizontal branching pattern and different structure that still 

provides a high leaf area. Also, the slope is almost 100% in this area which could introduce error 

into the LAI calculation due to the difference between surface area as measured along the slope 

and surface area measured planimetrically.  
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Figure 4-9: LAI at Leading Ridge One 

The results of the raw-lidar derived height index and the measured heights are shown in 

Figure 4-10. In Figure 4-11, differences are shown between the mean field-measured heights of 

dominant and co-dominant trees and the mean lidar-derived height index for each plot. In most 

plots, the difference between lidar-derived heights and measured heights is less than 3 meters. 

Plot 20, which shows a height difference of 9 meters, is on a plot with greater than 100% slope 

that touches the base of the rock ridgelet. This error was probably caused by a dominant tree at 

the bottom of the slope extending into the plot from overhead. Also worth noting is the area of 

shorter trees located on the northeast strip of the watershed. This is probably due to this area 

being privately owned and managed and the selective harvesting of large trees.  
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Figure 4-10: Average tree height of dominant and co-dominant trees in each plot and the lidar-derived tree 

height index for Leading Ridge One.  

 

Figure 4-11: Difference between lidar-derived height index and measured tree heights for 32 plots in 

Leading Ridge One. High negative values represent areas where lidar-derived height index was greater than 

the measured heights.  
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 In addition to univariate spatial analysis, vegetation metrics were analyzed using 

multivariate methods to investigate community structure and to explore dominant gradients that 

may be influencing the vegetation. A set of pairwise plots was constructed in R to assess 

correlation across metrics, with very little correlation identified. The variables with the highest 

correlation coefficients were average tree height and basal area of chestnut oak which were 

negatively correlated with a correlation coefficient of -0.66. This is expected because chestnut 

oak is known to inhabit sites with a lower site index. Both metrics were kept in the matrix for 

analysis because it was determined that they provide different information. Two vegetation 

matrices were analyzed in the multivariate analysis. The first was comprised of presence and 

absence of herbaceous, understory, and tree species. The second matrix was comprised of 

vegetation structure variables. Each plot was assigned to a group based on landform occurrence 

(Table 4-2). 

   

Table 4-2: Summary of formations and their major attributes 

Group  Name Pattern of Curvature Geology and Soils 

1 rock ridgelets Profile curvature and plan 

curvature >95% convex 

Underlain by shale, soils 

primarily Berks/Berks-Weikert.  

 

2 hidden hollows Profile curvature and plan 

curvature both >95% concave 

Underlain by shale, soils 

primarily Andover and 

Buchanan 

 

3 scalloped slopes Profile curvature and plan 

curvature both undulating, 

similar proportions of all 9 

categories 

Underlain by shale and 

sandstone of various groups, 

soils of Laidig, Dekalb, or 

Hazelton 

 

4 rounded ridges Profile curvature >95% convex 

or flat, plan curvature more 

evenly undulating 

Underlain primarily by 

Tuscarora quartzite and 

sandstone, soils primarily 

Hazelton, Dekalb, or rubble 
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Patterns of total basal area, number of trees, chestnut oak basal area, height, LAI, and 

total number of species are shown by group/formation in Table 4-3 with the standard deviation of 

each group in Table 4-4. Individual metrics were not analyzed statistically for significance across 

groups, but metrics were analyzed collectively using MRPP.  

Table 4-3: Mean values of total basal area, total number of trees, basal area of chestnut oak, height, LAI, 

and total number of species summarized by group.  

Group BA Number 
of Trees 

Quercus 
montana  BA 

Height LAI Total spp 

Rock ridgelet 27.58 22.13 11.58 19.86 3.57 13 

Hidden hollow 33.39 19 1.816 28.11 4.40 15.38 

Scalloped slopes 24.92 14.25 3.90 27.12 4.49 10.88 

Rounded ridge 21.96 17.63 11.10 20.32 3.00 9.25 

 

 

Table 4-4: Standard deviation of total basal area, total number of trees, basal area of chestnut oak, height, 

LAI, and total number of species summarized by group.  

Group BA Number  
of Trees 

Quercus 
Montana  BA 

Height LAI Total 

Rock ridgelet 7.20 6.36 6.70 3.82 0.8 3.38 

Hidden hollow 8.21 5.04 3.60 2.00 0.87 1.30 

Scalloped slopes 4.51 3.41 3.20 2.99 0.41 3.48 

Rounded ridge 7.41 2.67 5.49 2.92 1.00 1.75 

   

In order to test the hypothesis that vegetation structure and communities were 

significantly different in the four landforms, MRPP group testing was performed on a summary 

dataset containing total number of trees, average height of dominant and co-dominant trees, basal 

area, basal area of chestnut oak, LAI, and total diversity using Euclidean distance as the distance 

measure in PC-ORD (McCune and Medford 2006). The four groups were the landforms. The 

chance-corrected within-group agreement or A value was 0.20459523 with a p-value of having a 

smaller or equal A value of 0.0000044. MRPP group testing was also performed on a dataset 

containing presence absence data for tree and herbaceous species in each plot using Sørensen 

distance as the distance measure in PC-ORD. The chance-corrected within-group agreement or A 

value was 0.21286789 with a p-value of having a smaller or equal A value of 0. This verifies the 
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hypothesis that patterns of forest structure and forest communities are significantly more similar 

within landforms than between landforms.   

The structure dataset was analyzed with PCA using a correlation matrix as the cross 

product matrix. Two axes were interpreted as significant, with axis one accounting for 45% of the 

variance and axis two accounting for 29% of the variance (Figure 4-12). The plots are grouped 

into quadrants, with plots from rock ridgelet and rounded ridge tending to be on the upper end of 

the first axis, and scattered across the second axis, with the majority of plots being found close to 

the center on the second axis. Plots from the rounded ridge tended to be found slightly lower on 

the second axis than plots from the rock ridgelet. One of the plots in the rock ridgelet is a slight 

outlier and was located closer to plots from the hidden hollow than from other plots on the rock 

ridgelet or rounded ridge. This indicates that vegetation on the rounded ridge and rock ridgelet are 

more similar to one another than to the other formations, even though these features are very 

different in scale and elevation. They are also found on very different geologic and soil settings. 

These plots are also located furthest from one another on the landscape.  

There are two dominant axes influencing vegetation structure in the watershed. Axis one 

is probably related to water availability because the rock ridgelet and rounded ridge plots tend to 

be together on one end of the axis. These plots are both located in sites with rocky soils in more 

convex settings. The second axis is more difficult to interpret, but may be related to nutrient 

availability or pH.  
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Figure 4-12: Ordination diagram for the PCA analysis of structure dataset for Leading Ridge One.  

 

In order to analyze the community structure of the watershed, presence/absence data for 

trees and herbaceous species was analyzed for 78 species using NMS in PC-ORD (McCune and 

Medford 2006). Sørensen’s distance was used with a random starting number, and three axes 

were interpreted. The final stress of a 3-dimensional solution was 16.14. Patterns on the first two 

axes (Figure 4-13) were similar to the results of the PCA ordination of structure datasets, with a 

pattern of plots from the rock ridgelet and rounded ridge being found together on the positive end 

of the first axis, while plots from the hidden hollow and scalloped slopes are found at the lower 

end of the axis. The points tend to be divided into quadrants. The pattern on axis two consists of 

plots from the rock ridgelet and rounded ridge being found clustered on the negative end of the 
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axis, followed by plots from the scalloped slope and then the hidden hollow. Axis three (Figure 4-

14) tends to have the rounded ridge on the negative end of the axis, with the other three groups 

are found on the upper two thirds of the axis.  

 

 

 

  

Figure 4-13: Ordination diagram for NMS results for presence absence data for axis 1 and 2 
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Figure 4-14: Ordination diagram for NMS results for presence absence data for axis 2 and 3 

Community Composition 

In order to classify forest types to Fike’s (1999) Terrestrial and Palustrine Plant 

Communities of Pennsylvania, community data for each formation were analyzed and each 

landform was assigned to a community that most accurately matched the presence absence data 

for species. Rounded ridges in Leading Ridge Watershed One are characterized by dry oak heath 

forest type, which is characterized by chestnut oak, with occasional black oak, white oak, and 

other trees. The shrub layer is dominated by ericaceous species including mountain laurel 

(Kalmia latifolia), huckleberry (Gaylussacia spp.,) and blueberry (Vaccinium spp.). Common 
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herbaceous species include teaberry (Gaultheria procumbens) and trailing arbutus (Epigaea 

repens). This forest type is extremely common throughout Pennsylvania.  

As one moves down to the scalloped slopes, forests become more diverse with more 

mesic oak species sharing dominance including white oak, black oak, and red oak. Scalloped 

slopes in Leading Ridge One can probably be best characterized as Red oak-mixed hardwood 

which is dominated by northern red oak as dominant/co-dominant with black oak, white oak, 

hickories (Carya spp.), and tuliptree (Liriodendron tulipifera). Shrub species and herbaceous 

species are diverse and mixed and include maple-leaved viburnum (Viburnum acerifolium), 

serviceberry (Amelanchier spp.), and mountain laurel (Kalmia latifolia).  

Going into the hidden hollows, forests become more mesic with a much smaller 

proportion of oak species, particularly chestnut oak. Also, there is more conifer cover, 

particularly eastern white pine (Pinus strobus) and eastern hemlock (Tsuga candensis). As conifer 

cover increases to greater than 25% of total, the forest is classified as belonging to the Hemlock 

(white pine) - red oak - mixed hardwood forest type, which is very similar to the red oak-mixed 

hardwood forest also found in Leading Ridge but with white pine and eastern hemlock 

contributing more than 25% relative cover. Herbaceous species include false Solomon’s-seal 

(Smilacina racemosa), Solomon’s seal (Polygonatum biflorum.) teaberry, Canada mayflower 

(Maianthemum canadense), and may-apple (Podophyllum peltatum).  

The forest type on the rock ridgelet is the most difficult to categorize because it contains 

primarily dry oak species such as chestnut oak but lacks the dominant heath component like the 

dry oak-heath forest type. It also contains a much more diverse understory than a similar forest 

that makes up the rounded ridge, along with a high component of eastern white pine and pitch 

pine (Pinus rigida.) The forest type it is the most similar to is the Pitch pine-mixed oak type. 

Shrubs include green brier (Smilax spp.), black huckleberry (Gaylussacia baccata), and low bush 

blueberry (Vaccinium pallidum) although not nearly as dominant as in the dry oak-heath type. 
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Herbaceous species include bracken fern (Pteridium aquilinum,) teaberry, and pink lady’s slipper 

(Cypripedium acaule).  

Rothrock State Forest 

Curvature classes were calculated using the same methodology as described in the 

methods for a larger area that includes an area known as the Seven Mountains region of Rothrock 

State Forest. This area consists of multiple ridges separated by small forested valleys. As shown 

in Figure 4-15, the same patterns of curvature are found in this region as were initially identified 

and described in the Leading Ridge One watershed. It was expected that there may be several 

vegetation communities found on each formation based on specific site factors and land use 

history.  
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b) 

 
Figure 4-15: a) Curvature classes in a larger region of Rothrock State Forest known as the Seven 

Mountains region, along with b) hillshade of the region to show general topography.  
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All 16 plots placed in Rothrock State Forest were matched to one of Fike’s (1999) forest 

types, although in some cases this was difficult due to the small size of each plot and the 

confounding impact of management. Several plots that were initially planned using GIS were 

relocated in the field in order to avoid planted pine plantations. These sites were relocated in the 

field using the landform map to identify new plots. All four plots located on rounded ridges were 

classified as being in the dry-oak heath forest type. The four plots located on scalloped slopes 

were classified as being dry oak-mixed hardwood, red oak-mixed hardwood (2), or tuliptree-

beech-maple. The tupliptree-beech-maple plot had been harvested within the last 30 years and did 

not look very much like the surrounding forests which had also recently been harvested and 

which had large amounts of black gum and red maple. There may have been more heterogeneity 

in the scalloped slope plots than the rounded ridge plots due to the changes in curvature present in 

this formation. Parts of the scalloped slope that are concave/concave are likely to exhibit more 

mesic hardwoods than the convex/convex areas that could be immediately adjacent to them.  

The plots in the hidden hollows were all similar forest types: hemlock-red oak-mixed 

hardwood, hemlock-tuliptree-beech, tuliptree-beech-maple, and red oak-mixed hardwood. The 

four plots located on rock ridgelets were the most difficult to classify because of both the 

variation of sites on this landform and because often there was a discrepancy between the 

overstory and understory in these sites. For example, in one plot almost all of the overstory 

species were chestnut oaks but the understory was very rich and mesic, with almost no ericaceous 

species. The classifications were determined to be dry oak-mixed hardwood, dry white pine 

(hemlock) oak and pitch pine-mixed oak. They all tended to consist of dry oak species with pine 

of different species mixed in. None of the sites had a strong ericaceous shrub layer. There were 

shale fragments found throughout all of the rock ridgelets and there tended to be large amounts of 

moss and lichen covering the ground and tree trunks.   
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Discussion 

In this work a method of landform classification was proposed that takes into account 

only one parsimonious metric based on topography instead of combining multiple terrain metrics 

such as topographic index (TI), elevation, aspect, and slope as many classifications do. Also, soils 

and geology were not directly incorporated, although it can be argued that both are inherently 

included due to their connection with patterns of curvature. The omission of these parameters was 

not because these factors were not considered important factors in vegetation community 

development, but that currently available data for landscape level soil and geologic information 

are not accurate enough or on a correct scale to delineate landforms. Reiners et al. (1999) also 

used an approach using only terrain data in identifying LTAs in northwest Wyoming.  

In Figure 4-16, elevation, slope, aspect, and TI are shown for Leading Ridge Watershed 

One. If these are compared to the landform classes in Figure 4-5, there is little agreement between 

these topographic variables and the formations delineated using curvature. In the Ridge and 

Valley Province, rock ridgelets and rounded ridges exhibit similar vegetation structures and 

communities, although they are very dissimilar when viewed as a collection of their more 

commonly utilized topographic properties. This is in part due to the changes in geology that drive 

the topography. The change in water permeability from sandstone to shale influences the 

occurrence of the line of springs and seeps found across the center of the watershed. Additionally, 

soil depths above shale and sandstone tend to be different, with soil types underlain by shale 

being shallower than soil types underlain by sandstone (Shields 1966). There can also be 

differences in vegetation based on the calcium content of the parent bedrock, with more 

calcareous species being found over limestone and limey shale than sandstone (Fike 1999).  
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a) b) 

  
c) d) 

  
Figure 4-16: Elevation (a), slope (b), aspect (c) and Topographic Index (d) at Leading Ridge one.  
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It is possible that the reason slope and TI do not effectively predict vegetation could also 

be related to the compounding of DEM errors when computing second and third order terrain 

metrics such as TI and other commonly used indices. Van Niel et al. (2004) found less DEM error 

with topographic position than with TI, possibly because TI is created by dividing one dataset by 

another. Since curvature affects water movement and transport of other materials on the 

landscape, by using the best available data to focus on delineating curvature, we can more 

accurately and easily delineate landforms and predict vegetation communities. Pennock (1987) 

used slope in addition to curvature for his classification system. In this case, slope could be used 

to refine the classification, particularly in partitioning scalloped slopes into upper and lower 

slopes as there is generally an obvious slope break at some point in the landform. Slope may also 

help differentiate the more mesic rock ridgelet sites from the more xeric locations.   

Scale is another important factor that influences the design and implementation of 

classification systems. Previous work completed in Pennsylvania (Myers 2000, Kong 2006) has 

focused on landscape level classification, with Kong (2006) also including smaller ELTs that fit 

into larger features in a hierarchical way. With the improvement of elevation data, improvements 

can be made to these methodologies that efficiently utilize the refined elevation data at the 

appropriate scale.  

In analyzing results of the ordinations, there are two dominant environmental factors 

affecting both vegetation structure and community, with a third factor emerging slightly in the 

community analysis. The most obvious patterns are found on the first axes, with plots from rock 

ridgelets and rounded ridges occurring on one end of the axis and plots from the other two 

communities occurring at the other end. This axis is probably driven by water availability, 

because the rock ridgelet and rounded ridge sites are both located on convex types of formations 

with thin or rocky soils. The primary difference between these two types of sites is that rounded 

ridges tend to be found on sandstone, while rock ridgelets are generally on shale, which is also 
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reflected by a difference of soil texture and type. Although it is difficult to identify what factors 

are affecting the rest of the ordination, there are similar patterns occurring in all of the 

ordinations, suggesting that vegetation communities and structure may be responding to the same 

variables.  

The interaction between vegetation type and formation is not a direct one-to-one 

relationship, and individual landforms may be host to different vegetation communities. Part of 

this is due to the inherent heterogeneity involved in the delineation of the scalloped slope 

landform in particular. Although the small shifts in curvature are not large or dominant enough to 

classify as unique landforms, it would be assumed that these shifts affect the movement of water 

across the slope, which would impact vegetation. It is expected to find the more mesic hardwood 

species mixed in with more xeric oak and hickory species. This is also in part because vegetation 

communities can respond very strongly to land use and management histories which may be 

completely unrelated to landform. For example, invasive species have and continue to have a 

devastating impact on Pennsylvania forests, with the complete loss of the American Chestnut 

(Castanea dentata), reduction in oak due to gypsy moth (Lymantria dispar) defoliation, and 

recently, the loss of Eastern hemlock due to hemlock wooly adelgid (Adelges tsugae).  

Despite these complications, curvature does provide a tool to help delineate the dominant 

terrain features that make up a landscape and affect vegetation. The results from both Leading 

Ridge Watershed One and Rothrock State Forest both suggest that the same types of landforms 

occur throughout the Ridge and Valley Province. Although patterns of curvature cannot be used 

to directly predict vegetation, they can be used to interpretively delineate landforms which guide 

community development on a site. There could also be associations between structure variables 

such as tree density and height among landforms, although this was not analyzed for the broader 

Rothrock State Forest study area.  
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The most difficult formation on which to predict vegetation community are the rock 

ridgelet sites, which contained considerable variation depending on the specific site. Additionally, 

these areas tended to be preferentially planted in conifer plantations and may have been 

preferentially used for agriculture, making an assessment of their natural vegetation more 

difficult. Even in the smaller Leading Ridge One Watershed, one of the rock ridgelet plots was an 

outlier in the initial analysis, with a much richer, more mesic composition than the other rock 

ridgelet sites. This problem may have been exacerbated by the lack of an appropriate vegetation 

community description for these unique landforms. There is a large amount of variability of 

vegetation communities on rock ridgelets depending on slope, location, and specific structure of 

the formation, but they are all distinctly different than the adjoining formations. It is possible that 

by further analyzing rock ridgelet sites using texture and curvature, we could improve 

classification into more xeric sites and more mesic sites, based on either curvature or slope 

patterns. Despite the variability of rock ridgelet sites, they were distinguished by high amounts of 

pine and chestnut oak, low amounts of ericaceous understory species and high moss and lichen 

cover on both trees and the ground.  

  

Conclusions 

In an age of available lidar elevation data and with the continued need for improved 

ecological and landscape classification, lidar can be used in new ways to improve our 

classification methodologies. In the Ridge and Valley Province of Pennsylvania, a method of 

landscape classification for forested uplands has been explored based on recurring patterns of 

curvature on the landscape. This method reduces the sources of topographic and site variability to 

one parsimonious variable. Due to the patterns of geology in the Ridge and Valley Province, this 



139 

 

classification system is effective at predicting the presence of potential vegetation communities. 

Recurring formations include small steep rock ridgelets, narrow and rich hidden hollows, diverse 

scalloped slopes, and dominant rounded ridges. Although each of these formations has the 

potential to host several vegetation communities, there are defined patterns in vegetation 

community and structure that occur on these landforms.   

The Ridge and Valley Province offers a terrain that facilitates the use of a new 

classification system for improving understanding of the relationships between terrain and 

vegetation. It is an important ecosystem to understand because eastern forests are some of the 

most diverse temperate ecosystems in the world. Tree species in the eastern deciduous forests are 

also important for timber and wood products, with some species in demand throughout the world. 

This makes understanding terrain for ecosystem management essential. Some commonly used 

terrain metrics such as elevation, slope, aspect, and TI do not adequately describe the complex 

relationships between vegetation and site in this region due to the impact of soil and parent 

bedrock.   

Lidar data offers advantages over previously available elevation data, with greatly 

improved accuracy and resolution. It allows us to see and understand small scale features and 

micro-topography that can affect vegetation communities. Using traditionally available DEMs 

would not represent the topography and patterns of curvature the same way that lidar data 

currently can do. Lidar may also allow us to integrate scale in a way that was previously 

impossible and in the future facilitate classifying formations as sums of their smaller, more 

diverse parts. By expanding on this work, this may lead to the development a multi-scale 

hierarchical classification for the Ridge and Valley Province.  

 

 

 



140 

 

References 

Anderson, S.P., Bales, R.C, Duffy, C.J. 2008. Critical zone observatories: building a network to 

advance interdisciplinary study of Earth surface processes. Mineralogical Magazine 72: 7–10. 

 

Bolstad, P.V., Swank, W. and Vose, J. 1998. Predicting Southern Appalachian overstory 

vegetation with digital terrain data. Landscape Ecology 13, pp. 271–283. 

 

Bowersox, T.W., W.W. Ward. 1972. Prediction of oak site index in the ridge and valley region of 

Pennsylvania. Forest science, 18: 192-195. 

 

Carter, B.J. and Ciolkosz, E.J., 1991. Slope gradient and aspect effects on soils developed from 

sandstone in Pennsylvania. Geoderma 49: 199–213. 

 

Ciolkosz, E.J., Carter, B.J., Hoover, M.T., Cronce, R.C., Waltman, W.J. and Dobos, R.R. 1990. 

Genesis of soils and landscapes in the Ridge and Valley province of central Pennsylvania. 

Geomorphology, 3:245-261.  

 

Cleland, D.T., P.E. Avers, W.H. McNab, M.E. Jensen, R.G. Bailey, T. King, and W.E. Russell. 

1997. National hierarchical framework of ecological units. Pp.181-200. In: M.S. Boyce and A. 

Haney (eds.). Ecosystem management. Yale University, New Haven. 

 

ECOMAP. 1993. National hierarchical framework of ecological units. USDA Forest Service, 

Washington, D.C. 

 

Devlin, D.A., W.L. Myers, W.D. Sevon and D.M. Hoskins. 2001. Use of landtype associations 

and landforms in managing Pennsylvania’s state forests. Landtype associations conference: 

Development and use in natural resources management, planning and research. University of 

Wisconsin Madison, Wisconsin. 

 

Dikau, R. 1989. The application of a digital relief model to landform analysis in geomorphology. 

Three dimensional applications in geographical information systems. J. Raper, ed. Taylor and 

Fancis: New York. 51-77. 

 

ECOMAP. 1993. National hierarchical framework of ecological units. USDA Forest Service, 

Washington, D.C. 

 

Fike, J. 1999. Terrestrial and palustrine plant communities of Pennsylvania. Pennsylvania natural 

diversity inventory. 

 

Franklin, J., 1995. Predictive vegetation mapping: geographical modeling of biospatial patterns in 

relation to environmental gradients. Prog. Phys. Geogr. 19: 474–499. 

 

Gessler P.E, Moore, I.D., McKenzie,  N.J., Ryan, P.J. 1995. Soil-landscape modeling and spatial 

prediction of soil attributes. International Journal of Geographical Information Systems 9: 421–

432. 

 

http://www.sciencedirect.com/science/article/pii/S0006320700002214#bbib3
http://www.sciencedirect.com/science/article/pii/S0016706198001359#bb12
http://www.sciencedirect.com/science/article/pii/S0304380000003549#bbib95


141 

 

Kienzle, Stefan. 2004. The effect of DEM raster resolution on first order, second order, and 

compound terrain derivatives. Transactions in GIS. 8:83-111.  

 

Kong, N. 2006. Topographically-based landscape-scale ecological mapping in Pennsylvania. 

PhD. Dissertation. Intercollege Graduate Degree in Ecology. Penn State University, University 

Park, PA.  

 

Lehman, G. S.  1962. An evaluation of the physical and hydrological properties of the soil mantle 

on Leading Ridge Watershed two. M. S. Thesis. School of Forest Resources. Penn State 

University, University Park PA. 

 

Lynch, J. A. and E. S. Corbett, 1990. Evaluation of Best Management Practices for Controlling 

Nonpoint Pollution from Silvicultural Operations. Water Resources Bulletin 26:41-52. 

 

MacMillan,R.A., Pettapiece, W.W., Nolan, S.C., Goddard, T.W. 2000. A generic procedure for 

automatically segmenting landforms into landform elements using DEMs, heuristic rules and 

fuzzy logic. Fuzzy Sets and Systems 113: 81–109. 

 

Maune, D. F., editor. 2007. Digital elevation models and technologies and applications: the DEM 

user manual, 2
nd

 Edition. The American Society for Photogrammetry and Remote Sensing. 

Bethesda, MD. 

 

McCune, B. and Medford, M. J., PC_ORD Multivariate Analysis of Ecological Data, 5.18 ed., 

Gleneden Beach, OR: MJM Software, 2006. 

 

McGaughey. Fusion version 2.90, available at 

http://forsys.cfr.washington.edu/fusion/fusionlatest.html. 

 

McKenzie, N.J. and Austin, M.P., 1993. A quantitative Australian approach to medium and small 

scale surveys based on soil stratigraphy and environmental correlation. Geoderma 57: 329–355 

 

Moore, I. D., Grayson, R. B., and Ladson, A. R. 1991. Digital terrain modeling: a review of 

hydrological, geomorphological, and biological applications. Hydrological Processes. 5:3-30.  

 

Moore, I.D., Gessler, P.E., Nielsen, G.A. and Peterson, G.A. 1993: Soil attribute prediction using 

terrain analysis. Soil Science Society of America Journal 57: 443-52. 

 

Moriarity, B. 1996. Ecological landtype mapping unit legend for the Allegheny National Forest. 

 

Myers, W.L. 2000. Landscape scale ecological mapping of Pennsylvania forests. Research report 

ER2002-2, Environmental Resources Research Institute, University Park, PA. 

 

Niemann, K.O., Howes, D.E. 1991. Applicability of digital terrain models for slope stability 

assessment. ITC J 1991-3 : 127–138 

 

Noss, R. F. 1987. From plant communities to landscapes in conservation inventories: a look at 

The Nature Conservancy. Biological Conservation 41: 11-37. 

 

http://forsys.cfr.washington.edu/fusion/fusionlatest.html
http://www.sciencedirect.com/science/article/pii/S0016706198001372#bb7


142 

 

Olaya, V. 2009. Basic land-surface parameters. In: T. Hengl and H.I. Reuter, Editors, 

Geomorphometry — Concepts, Software, Applications, Developments in Soil Science vol. 33, 

Elsevier, Amsterdam pp. 141–169. 

 

Peck, J.E. 2010. Multivariate Analysis for Community Ecologists: Step-by-Step using PC-ORD. 

MjM Software Design. 

 

Pennock, D.J., Zebarth, B.J. and de Jong, E. 1987. Landform classification and soil distribution in 

hummocky terrain, Saskatchewan, Canada. Geoderma, 40:297-315. 

 

Pfister, R. D., Kovalchik, B. L., Arno, S.F., Presby, R. C. 1977. Forest habitat types of Montana, 

USDA-Forest Service Gen. Tech. Rep. INT-34, Intermountain Forest and Range Experiment 

Station, Ogden, UT 174 pp. 

 

Reiners, W.A., E.V. Axtmann and R.C. Thurston. 1999. Delineations of landtype associations for 

northwest Wyoming and the buffalo resource area. Bureau of Land Management, University of 

Wyoming, final report. 

 

Robinson, G. R. 1959. Tree mortality and defects on the Leading Ridge watershed number one. 

M. S. Thesis. School of Forest Resources. Penn State University, University Park PA. 

 

Schmidt, J. and Hewitt, A. 2004. Fuzzy land element classification from DTMs based on 

geometry and terrain position. Geoderma 121: 243–56. 

 

Schultz, C. H. editor. 1999. The Geology of Pennsylvania. Geologic Survey Special Publication 

1. 

 

Sevon, W. D., 1998, Landform map of Pennsylvania: Geological Society of America Abstracts 

with Programs, v. 30, no. 1, p. 73. 

 

Shields, R R. 1966. A shallow seismic refraction study of the soil mantle and bedrock 

configuration of Leading Ridge Watershed Two M. S. Thesis. School of Forest Resources. Penn 

State University, University Park PA. 

 

Van Niel, Kimberly P,  Laffan, S.W., Lees, B. G. 2004 Effect of error in the DEM on 

environmental variables for predictive vegetation modeling Journal of Vegetation Science 15: 

747-756. 

 

Wilson, J. P., Gallant, 2000. J.P. Wilson and J.C. Gallant, Editors, Terrain analysis: principles and 

applications, Wiley, New York. 

 

Zenner, E.K., J.E. Peck, K. Brubaker, B. Gamble, C. Gilbert, D. Heggenstaller, J. Hickey, K. 

Sitch, and R. Withington. 2010. Combining ecological classification systems and conservation 

filters could facilitate the integration of wildlife and forest management. Journal of Forestry 108: 

296-300.  

 

Zevenbergen, L. W. and Thorne, C. R. 1987. Quantitative analysis of land surface topography. 

Earth Surface Processes and Landforms, 12: 47-56.  

 

http://home.centurytel.net/~mjm/bcoverstepbystep.htm
http://www.sciencedirect.com/science/article/pii/S0022169403003809#bbib42


143 

 

Zhang W., Montgomery D. R.: 1994. Digital elevation model grid size, landscape representation, 

and hydrologic simulations. Water Resources Research.  30:1019-1028. 



 

 

Chapter 5 

 

Conclusions 

The Leading Ridge watersheds in the Ridge and Valley Province provide an interesting 

terrain that facilitates the use of new characterizations that can enhance the understanding of the 

relationships between terrain and vegetation. Commonly used terrain metrics such as elevation, 

slope, aspect, and TI do not adequately describe the complex relationships between vegetation 

and site in this region. For example, scalloped slopes are heterogeneous due to their complex 

washboard like pattern of being comprised by nine curvature classes in relatively equal 

proportions. The heterogeneity of their forest communities can be explained by this pattern, with 

concave areas being found immediately adjacent to convex areas. Using lidar-derived elevation 

data, we can identify these landforms occurring on the scale of 1-100 m, as well as the roughness 

of these landforms. This can facilitate an improved understanding of forested watersheds and the 

interactions between water, soil, topography, and vegetation. Processes are working on multiple 

scales simultaneously in an interactive manner, so by using a multi-scale, multidisciplinary 

approach to landform modeling, landform classification and vegetation predictions can be 

improved.  

Using lidar, we can identify and protect small, headwater streams that are currently 

missing in the analysis due to lack of accurate hydrographic data. Riparian areas are known to be 

extremely important for protecting valuable ecosystem services and are hotspots for biodiversity, 

denitrification, flood control, and ground water recharge. In Leading Ridge, we are able to 

identify many more headwaters stream reaches than by using previously available data which can 

facilitate the identification of important riparian habitat on the landscape and also may lead to 

improvements in our ecosystem services models. For the purpose of stream network modeling, 
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resolution of the DEM cell does not have as important of an effect as vertical accuracy, at least in 

resolutions up to a 10 m. There was no statistical difference between the streams modeled using 

the 1 m or 10 m resolution lidar-derived DEMs, but there was a statistical difference between 

streams modeling using a 10 m lidar-derived and 10 m NED DEMs, with the 10 m lidar-derived 

DEM being significantly more accurate than that modeled using the NED DEM. Using a 10 m 

lidar-derived DEM, we could improve our stream network delineation over both site and 

landscape scales, greatly improving currently available spatial hydrographic datasets for forest 

planning, ecosystem management, and site planning. By using a smoothed DEM or a 3 to 10 m 

resolution DEM, errors caused by cultural hydrologic features such as culverts, roads, and trails 

can be reduced in the stream network mapping. When utilizing TI for ecosystem studies or 

hydrologic modeling, care must be taken when evaluating the effects of resolution, accuracy, and 

methodology. Using a fine resolution DEM with a single direction flow routing algorithm may 

inaccurately model extremely wet areas as parallel lines well up a watershed, while identifying 

areas immediately adjacent to streams as relatively dry due to the impact of the channelized 

contributing area on the TI calculation.  

In addition to the considerations of resolution and accuracy for DEM-based modeling, 

there can be a substantial error and extraneous features introduced via the algorithm used for 

DEM-generation. Although QAQC RMSE may be low for some types of algorithms such as one 

based on the generation of the triangulated irregular network (TIN), this may not mean that it 

effectively models conditions such as surface roughness. RMSE of research grade and lower 

density topographic grade lidar are very similar for the area of Leading Ridge, although the 

DEMs exhibit different properties and appearances. Neither DEM matches surveyed surface 

roughness at the sub meter scale, although textural patterns are visible using both DEMs that 

seem to be responding to topography, geology, and soil. Using micro-topography derived from a 

1 m DEM, surface expressions of changing soil and geology can be identified and delineated 
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interpretively. There was not one ―best‖ metric, methodology, or resolution that modeled 

roughness in all settings but patterns emerged that suggest that metrics may all be reflecting 

common features.  

By analyzing features on a broader scale than roughness modeling, dominant landforms 

emerge based on patterns of curvature. Curvature may be an efficient tool for modeling landforms 

because it is both responsive to differential patterns of weathering and is an important predictor in 

soil formation and hydrologic processes. Certain geologic features weather into different patterns 

of curvature, with resulting curvature directing water and other substances across the ecosystem 

which continues to perpetuate these differences. For example, Tuscarora quartzite weathers into 

ridges that exhibit the curvature pattern of rounded ridges, while Rose Hill shale forms ridges that 

are convex in both plan and profile curvature. Vegetation communities are following these 

patterns of curvature, with dry oak-heath forest types being found exclusively on rounded ridges, 

and more mesic compositions being found on other landform types. Although there is 

heterogeneity across formations of the same type, particularly within formations defined in part 

by the heterogeneity of their curvature, these formations can serve as an important tool for 

classifying the landscape. Also, some of the heterogeneity could probably be predicted by 

coupling landform analysis with a finer scale analysis such as the meter scale roughness analysis.  

Lidar-derived DEMs offer advantages over previously available elevation data, with 

improved accuracy and resolution. It allows us to see and understand small scale features and 

micro-topography that can influence vegetation communities. Modeling patterns of curvature 

using traditionally derived DEMs would not represent the topography and patterns of curvature 

the same way that lidar data can do. Lidar may allow us to integrate scale into classification in a 

way that was previously impossible by classifying formations in terms of sums of their smaller, 

more diverse parts. Future work in the multi-scale nature of landform classification should refine 

major groups identified here using finer scale patterns of curvature or roughness data.  
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Another direction for future research is to broaden scale of this work and see what kinds 

of patterns emerge in different geologic and topographic settings. A first step would be to apply 

curvature and roughness modeling to regions of adjoining physiographic provinces such as the 

Appalachian Plateau Province and South Mountain Province, both areas which contain similar 

vegetation communities. It would be interesting to see if the same curvature patterns, stream 

delineation methods, and roughness signatures appear in these settings and if they have a similar 

interaction with vegetation communities. It would also be useful to analyze the fine scale 

roughness patterns that emerge in different vegetation settings, such as in areas of extremely 

dense evergreen shrubs, early successional forests, or old growth settings in order to expand the 

utility of this work. A third way this research can be continued is to use the accurate terrain and 

hydrological network data to explore the implications these data may have for currently utilized 

hydrologic models.  

Much of the recent work in catchment science and critical zone science is in trying to 

understand water movement through watersheds above the point of delineated streams. This was 

a very difficult area to study prior to lidar because of the difficulty and expense of field sampling 

for soil properties. Research is currently being done to understand water transit times in a 

catchment, water storage in an ecosystem, and how water moves through an ecosystem from the 

time that it hits the surface until the time it becomes stream run-off. This water is difficult to 

trace, but through lidar, we may finally be able to predict where water is going. For example, in 

some areas of the watershed, streams were modeled using lidar that did not exist on the surface. 

In other areas, springs and streams emerged at locations not modeled using surface DEMs. By 

focusing on these areas, we can begin to sample and improve understanding of sub-surface water 

movement, and the role of surficial roughness features on flow routing.  

There should also be a relationship between surface roughness of terrain and water 

storage. By integrating roughness metrics with flow accumulation algorithms, we may begin to 
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understand these temporary and long-term water storage predictors and the role of these micro-

scale features on the hydrologic landscape. Combining these metrics with hydrologic models and 

discharge measurements, we may better understand short term storage and identify areas 

particularly important to ecosystems services such as denitrification and flood mitigation.  

Despite all of these advantages, there are challenges to utilizing lidar related to the care 

that must be used to integrate data of various scales and from various lidar products 

simultaneously. Although there is a good deal of new information that can be extracted from a 

lidar-derived DEM, there is also much mis-information that can result if done incorrectly or 

without taking suitable precautions. Lidar can be said to provide us with a new set of eyes, and in 

order to take advantage of the tool, we should re-evaluate all previous assumptions regarding 

scale, terrain analysis, and DEMs. This work endeavors to do that, but much more work can still 

be done to verify and apply these results to a broader scale and to get this data into the hands of 

practitioners and managers.   
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